

Mathematics

Curriculum Area: Mathematics

An intelligent mind acquires knowledge, and the ear of the wise seeks knowledge. Proverbs 18:15

Curriculum Intent

All students in the Mathematics department should have a right to follow a curriculum and receive teaching that is appropriate to their mathematical ability and their needs. As a Department our aim is to ensure that learners acquire, develop and gain the following:

- Become critical thinkers and understand key concepts to help solve problems in unfamiliar situations.
- Are suitably challenged to achieve the best grade possible.
- Feel inspired by teachers who cultivate a passion for Maths in lessons.
- Have opportunities to develop their skills.
- Have high self-esteem, aspirations and develop a love of Mathematics.
- Are motivated to achieve their best in every Maths lesson.
- Understand that learning in Mathematics contributes to personal development.
- Use methods of investigation to solve problems in a disciplined way.
- Appreciate the contribution Maths makes to society and realise that applying Mathematics can lead to moral and ethical issues having to be addressed.
- Appreciate the powerful, but provisional nature of Mathematics knowledge and explanation.
- Are being catered for in a range of different ways according to their age, ability and social needs.

Curriculum Overview: Mathematics

	Year 7	Year 8	Year 9	Year 10	Year II	Year 12	Year 13
НТІ	Place Value, the four operations	Indices, Multiples, Factors, primes, negative numbers, rounding.	Arithmetic, Powers, Fractions, decimals and percentages.	F: Rounding and error intervals, percentages and ratio. H: Surds and indices, quadratics and graphs.	F: Multiples and factors, algebra, solving equations.	Pure: Algebraic Expressions, Quadratics, Equations and Inequalities Applied: Data Collection, Measures of Location and Spread, Representation of data,	Pure: Algebraic fractions, algebraic division, Functions s and graphs. Applied: Regression, correlation and hypothesis testing
HT2	Perimeter, Area and units, Angles and 2D shapes	Length and area, 3D shapes, Compound measures	Algebraic Manipulation, Co- ordinates and graphs.	F: Perimeter, Area and Volume H: Arcs and sectors, circle theorems	F: Indices and standard form, right angled triangles.	Pure: Quadratics, Straight Line graphs, Circles Applied: Correlation, Probability	Pure: Sequences and series, binomial expansion, Radians Applied: Conditional probability and the Normal distribution
НТЗ	Fractions, Decimals and Percentages	Fractions and Probability	2D and 3D Shapes	F: Angles, bearings and transformations. H: Similarity and congruence, transformations, probability.	Revision	Pure: Algebraic Methods, Differentiation Applied: Binomial distribution, probability distributions, hypothesis testing.	Pure, Trignometric fu nctions, Trigonometry and modelling Applied: Moments, Forces and Friction
HT4	Algebra, Co- ordinates and graphs	Algebraic manipulation and solving equations.	Solving equations and sequences.	F: Drawing graphs H: Volume, Bounds	Revision	Pure: Integration, The Binomial Expansion Applied: Modelling in mechanics, constant acceleration	Pure: Parametric equations, Differentiation Applied: Projectiles, application of forces
HT5	Order of operations, ratio and proportion.	Angles and Transformations	Percentages and Proportion	F: Compound measures, probability.	Revision	Pure: Trigonometric Ratios, Exponentials and Logs	Pure: Numererical m ethods, Integration. Vectors

				H: Graphs of circles,	Applied: Forces and	Applied: Eurther
					Applied. Forces and	Applied. Further Kinematics
		6				Kinematics.
HI6	Working with data	Statistics	Constructions, Loci	F: Averages and	Pure: Vectors	
			and bearings.	range		
				H: Histograms,	Applied: Variable	
				Cumulative frequency	Acceleration	
				and box plots.		

Curriculum Overview: Further Mathematics

	Voor 12	Vegr 12
		fear 13
HT1	Complex number (4) introduction and	COMPLEX NUMBERS (6)
	basic manipulations	De Moivre's theorem and nth roots
	The Argand diagram, Modulus and argument (8)	Solving geometric problems
	Mod-Arg form of complex numbers	HYPERBOLIC FUNCTIONS (6)
	Loci and Regions in the argand diagram	Definitions, inverse hyperbolic
	Graphs and networks (4)	Differentiating hyperbolic functions
	Planarity algorithm	Integrating hyperbolic functions
	Algorithms on graphs (5)	Introduction to momentum and impulse (3)
		Introduction to work, energy, power (6)
HT2	Roots of polynomials (8)	POLAR COORDINATES (6)
	Roots of a quadratic equation	Sketching curves, areas enclosed
	Roots of a cubic equation	Tangents to polar curves
	Roots of a quartic equation	SERIES (6)
	Series (6)	The method of differences
	Sums of natural numbers	Maclaurin series and expansions
	Sums of squares and cubes	Power (1)
	Floyd's algorithm (2)	Hooke's law and equilibrium problems (6)
	Route inspection algorithm (6)	
	Travelling salesman problem (4)	
HT3	Introduction to matrices (5), multiplication	METHODS IN CALCULUS (12)
	Determinant, Inverting a 2x2 matrix, 3x3 matrix	Improper integrals
	Solving systems of equations using matrices	The mean value of a function

	Linear transformations in 2D (9):	Differentiating inverse trig functions
	Reflections and Rotations	Integrating with inverse trig Integrating using partial fractions
	Enlargements and stretches	Problem solving involving elastic energy (3)
	Critical path analysis (3)	Collisions and Newton's law of restitution (6)
	Activity networks/precedence tables (2)	
	Earliest and latest times (2)	
	Gantt charts (3)	
HT4	Proof by induction (8) for summation	VOLUMES OF REVOLUTION (12)
	Proof by induction for divisibility	Vol of revolution around the x-axis
	Proof by induction for matrices	Vol of revolution around the y-axis
	Volumes of revolution (7) Modelling with volumes of revolution	Volumes of revolution of parametric
	Scheduling diagrams (4)	Modelling with volumes of revolution
	Resource histograms	Oblique impact of a sphere with a plane surface (3)
	Linear programming	Successive oblique impacts of a sphere with plane surfaces (3)
	Formulating the problem	
	Graphical methods	
	Locating the optimal point (5)	
HT5	Vectors (8), Equation of a line in 3D	METHODS IN DIFF EQUATIONS (10)
	Equation of a plane in 3D	First-order differential equations
	Scalar product	Second-order homogeneous diff equations
	Angles between lines and planes	2nd-order non-homogeneous diff equations
	Finding perpendiculars	Using boundary conditions
	Integer only solutions (2)	MODELLING WITH DIFFERENTIAL EQUATIONS (8)
	Algorithms and flow charts	Modelling with 1st order diff equations
	Sorting algorithms	Simple harmonic motion
	Bin packing algorithms	Damped and forced harmonic motion
	Order of an algorithm (5)	Coupled 1st order simult. diff equations
		Oblique impact of smooth spheres (3)
HT6	Simplex algorithm - introduction	
	Simplex algorithm - one stage	
	Simplex algorithm - two stage	
	Big-M method (6)	

Curriculum Overview: Core Mathematics		
	Year 12	
HTI	Analysis of Data:	
	Sampling, Measures of Spread, Box and Whisker Diagrams, Cumulative Frequency Graphs, histograms.	
HT2	Fermi Estimation,	
	Personal finance; Tax, national insurance, mortgages, APR, AER.	
HT3	Critical Analysis of graphs within the media.	
	Critical Path analysis and project planning.	
HT4	Probability, expectation and cost-benefit analysis.	
HT5	Working with the Preliminary material.	
HT6	Exam	

Subject Specific Information

Mathematics contributes to the school curriculum by developing students' abilities to solve problems, to calculate, to reason logically, algebraically, and geometrically and to make sense of data. Mathematics is important for students in many other areas of study, particularly Science and Technology. It is also important in everyday life, in many forms of employment and in decision-making.

As a subject in its own right, Mathematics presents frequent opportunities for creativity. It can stimulate moments of pleasure and wonder; especially when problems are solved or when more elegant solutions to problems are discovered. Mathematics is one means of making knowledge useful.

We want all our students to become fluent in the fundamentals of mathematics, to be able to reason mathematically and to solve problems by applying their mathematical understanding to a variety of problems.

Within the Mathematics department, we aim to set challenging targets with high expectations for all students. We strongly believe in the importance of offering a variety of different approaches to teaching and learning to help motivate students. We will always look to ensure that the students are actively participating and enjoying mathematics.

Mathematics is usually taught in ability sets: this means the more able children will be stretched, while children who struggle with Mathematics will take things more slowly, and be given more support. In KS3 your child will find some of the work similar to primary school, but it will be more challenging and the children are expected to be working more independently. With all the topics the children will be studying, they'll be developing 'mathematical process' skills, which include reasoning, analysis and evaluation.