Year 7 Mathematics

Year 7							
Christmas	Algebraic Thinking					Place Value and Proportion	
	Sequences	Algebraic Notation		Equality and Equivalence		Place Value, Ordering Integers and Decimals	Fraction, Decimal and Percantage Equivalence
Lent	Applications of Number					Directied Number	Fractional Thinking
	Solving Problems with addition and subtractions	Solving problems with multiplication and division			$\begin{gathered} \text { Fractions } \\ \text { and } \\ \text { Percentages } \\ \text { of amounts. } \end{gathered}$	Operations and Equations with directed number	Addition and subtraction of Fractions
		Lines a	Angles			Reasoning w	ith Number
Pentecost	Constructing, me using geometric	suring \& otation	Devel reaso	ing Ge g with	metric angles	Sets and Probability	Prime Numbers \& Proof

Year 7 Mathematics - Christmas Term

Sequences	We know that the beauty of mathematics comes from the ability to spot patterns, so this is where we start in year 7. In this unit students purposefully do not move to finding the nth term of a sequence and instead we explore the features of both linear and nonlinear sequences. Calculators are used in this unit. Fibonacci is included in this unit to explore the beauty of maths within the real world.
Algebraic Notation	Algebra is one of the most fundamental aspects of maths and one that is sometimes looked at negatively, so we have put this early in the year and focused on a deep level of knowledge of the basic algebraic forms and not moving to more complex algebra. Function machines are used alongside bar models to understand why algebra simplifies the way it does, to focus on the understanding of inverse operations and support students towards the abstract nature of algebra. At the end of this unit students should be comfortable understanding how to move freely between key algebraic notation.
Equality and Equivalence	With a basic understanding of algebraic notation, we now use the work that we did on function machines and inverse operations from the previous unit and move on to solving equations. The focus in this unit is to ensure that students are not just spotting answers and that they are understanding how to solve equations so a lot of questions will require the use of a calculator. This unit also looks at the concept of equivalence and introduces notation for "always equal to" when collecting like terms.
Place Value, Ordering Integers and Decimals	Although students have studied place value in KS1 and 2 we will extend this knowledge in this unit to bigger numbers and for some learners, standard form. The understanding and use of number lines is explored in depth both with integers and non-integer numbers (but all positive) and the use of ordering of numbers is developed with calculating the median and range. Rounding of non-decimal numbers is introduced here alongside rounding to dignificant figures. Work on algebra from previous units of work is interleaved into this unit with students finding the answer to equations and then ordering them or rounding them.
Fraction, Decimal and Percantage Equivalence	The focus of this unit of work is to use the knowledge of equivalence from unit 3 alongside the understanding of decimals from unit 4 to build students' understanding of fractions, decimals and percentages. Initially - students will focus on multiples of $1 / 10$ and $1 / 4$ before extending students' knowledge to more complex conversions. Pie charts are introduced in this unit using fraction, decimal and conversions to find out the proportion of certain sectors. The focus of this unit is for students to be confident in the common FDP conversions rather than being able to convert all numbers - this will be revisited later in the year.

Year 7 Mathematics - Lent Term

| Solving Problems |
| :---: | :---: | :---: |
| with addition and |
| subtractions | | This unit is focussed on building on from the formal methods of addition and subtraction from KS2. All students will look at the use of this skill |
| :---: |
| within problems, however the amount of problem solving may differ between students depending on their confidence. Problems will be taken |
| from different areas of maths which invole adding and subtracting - for example frequency trees, perimeter, money skills as well as bar charts |
| and data tables. Calculators can be used here to support and check calculations however the focus is students completing all arithmetic |
| independently. Significant figures and equations using addition and subtraction are interleaved within this topic. |

Year 7 Mathematics - Pentecost Term

| Constructing,

 using geometric
 notation | In this unit students will build on their KS2 knowledge of using measuring equipment such as protractors, rulers and compasses. The
 correct geometric notation will also be introduced to ensure that when students approach more complex geometric problems in the
 future, they are familiar with the labelling, and notation involved. Pie charts will be covered here also to support students with more
 practice of measuring and drawing angles. |
| :---: | :---: | :---: |
| Developing
 Geometric
 reasoning with
 angles | Building on the ability to label geometric diagrams correctly students will now use this within their angle facts. This unit will revise some
 angle facts taught in KS2 and extend these in new problems. As well as this, students will learn new information about 2D shapes and
 angles and use these to develop chains of reasoning. The focus of this unit is to develop student's ability to explain why they know
 something and use correct terminology. We recall the ability to solve equations by focusing on this within teaching and practice when
 finding missing angles. Some students will also begin to investigate the properties of angles in parallel lines. |
| Sets and
 Probability | FDP equivalence (unit 5) is revisited explicitely in this unit. Students will learn about set notation with an introduction to formal
 proabability notation. They will also learn about listing strategies. Venn diagrams, tables and grids are all used to ensure that students can
 solve probability problems across a variety of representations. They may also use freuqency trees, developing from their use in unit 4. |
| Prime Numbers | |
| \& Proof | Factors and multiples will be revisited in this unit (seen in unit 7 initially) as well as HCF and LCM being explicitly taught. Students will
 come across a variety of special mathematical numbers/ sequences such as triangle and square numbers and also be introduces to
 powers and roots. Some students will start to work towards the understanding of mathematical proof. |

