Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a	In the sequence 2, 5, 8, 11, 8 is
	term.	the third term of the sequence.
<u></u>		
3. Term-to-	A rule which allows you to find the	First term is 2. Term-to-term rule is
term rule	next term in a sequence if you know the previous term .	`add 3'
	the previous term.	Sequence is: 2 5 8 11
4. nth term	A rule which allows you to calculate	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$
4. nun term	the term that is in the nth position	That term is $3\pi - 1$
	of the sequence.	The 100 th term is $3 \times 100 - 1 = 299$
	or the sequence.	
	Also known as the 'position-to-term'	
	rule.	
	n refers to the position of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or	2. Start with $4n$
	subtract to get the first number in	3. $4 \times 1 = 4$, so we need to subtract
	the sequence.	1 to get 3.
6. Fibonacci	A converse where the post number is	nth term = $4n - 1$
	A sequence where the next number is	The Fibonacci sequence is: 1,1,2,3,5,8,13,21,34
type sequences	found by adding up the previous two terms	1,1,2,3,3,0,13,21,34
sequences		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each	An example of a geometric
Sequence	term is found by multiplying the	sequence is:
·	previous one by a number called the	2, 10, 50, 250
	common ratio, r.	The common ratio is 5
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{3}$
8. Quadratic	A sequence of numbers where the	
Sequence	second difference is constant.	+4 +6 +8 +10 +12
		+2 +2 +2 +2
	A quadratic sequence will have a n^2	
	term.	

9. nth term of	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
a geometric		
sequence	where a is the first term and r is the	$2 \times 5^{n-1}$
	common ratio	
10. nth term	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25,
of a quadratic	2. Halve the second difference and	40
sequence	multiply this by n^2 .	
	3. Substitute $n = 1,2,3,4$ into your	Answer:
	expression so far.	Second difference = $+4 \rightarrow$ nth term
	4. Subtract this set of numbers from	$= 2n^2$
	the corresponding terms in the	
	sequence from the question.	Sequence: 4, 7, 14, 25, 40
	5. Find the nth term of this set of	$2n^2$ 2, 8, 18, 32, 50
	numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the	, , , , ,
	overall nth term of the quadratic	Nth term of this set of numbers is
	sequence.	-3n + 5
	Substitute values in to check your nth	Overall nth term: $2n^2 - 3n + 5$
	term works for the sequence.	
11.	The sequence which comes from a	1 3 6 10
Triangular	pattern of dots that form a triangle.	
numbers		
	1, 3, 6, 10, 15, 21	

