Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Scale 1:10
		Real Horse Drawn Horse 1500 mm high 150 mm high 2000 mm long 200 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) 	The bearing of \underline{B} from \underline{A}
	Look out for where the bearing is measured <u>from</u> .	The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	NW NE E
	Bearings: $NE = 045^{\circ}$, $W = 270^{\circ}$ etc.	SW SE