Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square Number	The number you get when you multiply a number by itself.	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225 $9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get another number.	$\sqrt{36} = 6$
	The reverse process of squaring a number.	because $6 \times 6 = 36$
3. Solutions to $x^2 = \dots$	Equations involving squares have two solutions , one positive and one negative .	Solve $x^2 = 25$ x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube Number	The number you get when you multiply a number by itself and itself again.	1, 8, 27, 64, 125 $2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and itself again to get another	$\sqrt[3]{125} = 5$
	number.	because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers	The powers of a number are that	The powers of 3 are:
of	number raised to various powers.	$3^{1} = 3$ $3^{2} = 9$ $3^{3} = 27$ $3^{4} = 81$ etc.
7. Multiplication Index Law	When multiplying with the same base (number or letter), add the powers .	$7^{5} \times 7^{3} = 7^{8}$ $a^{12} \times a = a^{13}$ $4x^{5} \times 2x^{8} = 8x^{13}$
	$a^m \times a^n = a^{m+n}$	
8. Division Index Law	When dividing with the same base (number or letter), subtract the	$15^{7} \div 15^{4} = 15^{3}$ $x^{9} \div x^{2} = x^{7}$
	powers.	$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets Index Laws	When raising a power to another power, multiply the powers together.	$(y^2)^5 = y^{10}$ $(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	$(3x) - 123x^{-1}$
10. Notable Powers	$p = p^1$ $p^0 = 1$	$99999^0 = 1$
11. Negative Powers	A negative power performs the reciprocal.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
	$a^{-m} = \frac{1}{a^m}$	

12. Fractional Powers	The denominator of a fractional power acts as a 'root'.	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
	The numerator of a fractional power acts as a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	

