Topic/Skill **Definition/Tips** Example 1. Parallel Parallel lines never meet. 2. Perpendicular lines are at right angles. Perpendicular There is a 90° angle between them. vertex 3. Vertex A corner or a point where two lines meet. Angle Bisector: Cuts the angle in 4. Angle **Bisector** half. 1. Place the sharp end of a pair of compasses on the vertex. 2. Draw an arc, marking a point on each line. Angle Bisector 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point. 5. **Perpendicular Bisector: Cuts a line** Perpendicular in half and at right angles. **Bisector** 1. Put the sharp point of a pair of Line Bisector compasses on A. A B 2. Open the compass over half way on the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs. The **perpendicular distance** from a 6. Perpendicular point to a line is the **shortest** from an distance to that line. **External Point** 1. Put the sharp point of a pair of compasses on the point.

Topic: Loci and Constructions

	 Draw an arc that crosses the line twice. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. Repeat from the other point on the line. Draw a straight line through the two intersecting arcs. 	
7. Perpendicular from a Point on a Line	 Given line PQ and point R on the line: 1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 	$\frac{1}{P} \xrightarrow{S} \frac{1}{R} \xrightarrow{R} \frac{1}{T} \xrightarrow{Q} \frac{1}{Q}$
	 Place the compass on point S, open over halfway and draw an arc above the line. Repeat from the other arc on the line (point T). Draw a straight line from the intersecting arcs to the original point on the line. 	
8. Constructing Triangles (Side, Side, Side)	 Draw the base of the triangle using a ruler. Open a pair of compasses to the width of one side of the triangle. Place the point on one end of the line and draw an arc. Repeat for the other side of the triangle at the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	
9. Constructing Triangles (Side, Angle, Side)	 Draw the base of the triangle using a ruler. Measure the angle required using a protractor and mark this angle. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn. Connect the end of this line to the other end of the base of the triangle. 	B 50° 7cm

10.	1 Draw the base of the triangle using a	
Constructing	1. Draw the base of the triangle using a ruler.	Å
0		
Triangles	2. Measure one of the angles required	
(Angle, Side,	using a protractor and mark this angle.	
Angle)	3. Draw a straight line through this	v 42° 51° 7
	point from the same point on the base	8.3cm
	of the triangle.	0.001
	4. Repeat this for the other angle on	
	the other end of the base of the	
	triangle.	
11.	1. Draw the base of the triangle using a	
Constructing	ruler.	C
an Equilateral	2. Open the pair of compasses to the	
•		
Triangle (also	exact length of the side of the triangle.	
makes a 60°	3. Place the sharp point on one end of	
angle)	the line and draw an arc.	
	4. Repeat this from the other end of	MathBits.com
	the line.	A B
	5. Using a ruler, draw lines connecting	
	the ends of the base of the triangle to	
	the point where the arcs intersect.	
12. Loci and	A locus is a path of points that	
Regions	follow a rule.	
-		AB
	For the locus of points closer to B	
	than A, create a perpendicular	
	bisector between A and B and shade	Points Closer to B than A.
	the side closer to B.	Points Closer to B that A
	For the locus of points equidistant	
	For the locus of points equidistant	2cm
	from A, use a compass to draw a	
	circle , centre A.	
		Points less than Points more than
		2cm from A 2cm from A
		x
	For the locus of points equidistant to	Y
	line X and line Y, create an angle	
	bisector.	
		\mathbf{D}
	For the locus of points a set distance	
	from a line, create two semi-circles	

	at either end joined by two parallel lines .	
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same .	

