Topic: Circumference and Area Topic/Skill Definition/Tips Example 1. Circle A circle is the locus of all points equidistant from a central point. Parts of a Circle 2. Parts of a **Radius** – the **distance** from the Circle centre of a circle to the edge **Diameter** – the total **distance** across the width of a circle through the Circumference Diameter centre. Radius **Circumference** – the **total distance** around the **outside** of a circle Chord – a straight line whose end points lie on a circle Tangent Arc Chord Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle **Sector** – the **region** of a circle Segment Sector enclosed by two radii and their intercepted **arc** Segment – the region bounded by a chord and the arc created by the chord $A = \pi r^2$ which means 'pi x radius 3. Area of a If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$ Circle squared'. $C = \pi d$ which means 'pi x diameter' If the radius was 5cm, then: 4. Circumferenc $C = \pi \times 10 = 31.4cm$ e of a Circle 5. π ('pi') Pi is the circumference of a circle 3 divided by the diameter. DRG Ran# $\pi \approx 3.14$ Ans EXP Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$ 6. Arc Length The arc length is part of the of a Sector circumference. 4cmTake the **angle** given **as a fraction** 115 over 360° and multiply by the circumference. Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$ 7. Area of a The area of a sector is part of the total Sector area. 4cmB Take the **angle** given **as a fraction** O115 over 360° and multiply by the area.

8. Surface Area of a	Curved Surface Area = πdh or $2\pi rh$	
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface Area of a Cone	Curved Surface Area = πrl where $l = slant height$	5m
	Total SA = $\pi r l + \pi r^2$	300
	You may need to use Pythagoras'	
	Theorem to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface Area of a	$SA = 4\pi r^2$	Find the surface area of a sphere with radius 3cm.
Sphere	Look out for hemispheres – halve the SA of a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

