Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations ,	2x + y = 7
Simultaneous	each involving two or more variables	3x - y = 8
Equations	(letters).	x = 3
	The solutions to simultaneous	y = 1
	equations satisfy both /all of the	, -
	equations.	
2. Variable	A symbol , usually a letter , which	In the equation $x + 2 = 5$, x is the
	represents a number which is	variable.
3. Coefficient	usually unknown. A number used to multiply a	6z
3. Coefficient	variable.	02
	variable.	6 is the coefficient
	It is the number that comes before/in	z is the variable
	front of a letter.	
4. Solving	1. Balance the coefficients of one of	5x + 2y = 9
Simultaneous	the variables.	10x + 3y = 16
Equations (by	, ,	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get	10x + 3y = 16
	using the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found	y = 2
	back into one of the previous	Cubatituta 2 in to counting
	equations.	Substitute $y = 2$ in to equation.
	5. Solve the equation you get.6. Check that the two values you get	$5x + 2 \times 2 = 9$
	satisfy both of the original equations.	5x + 4 = 9
	Jacobs, Sour or the original equations:	5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations	y - 2x = 3
Simultaneous	into the form $y =$ or $x =$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of	
Substitution)	the rearranged equation into the other	Rearrange: $y - 2x = 3 \rightarrow y = 2x +$
	equation.	3
	3. Expand and solve this equation.	Substitute: $3x + 4(2x + 3) = 1$
	4. Substitute the value into the $y =$ or $x =$ equation.	Substitute: $3\lambda + \pi(2\lambda + 3) = 1$
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$
		Substitute: $y = 2 \times -1 + 5$ y = 1

Solution: x = -1, y = 1**Draw the graphs** of the two 6. Solving v = 2x - 1Simultaneous equations. **Equations** (Graphically) The **solutions** will be **where the** v = 5 - xlines meet. The solution can be written as a coordinate. y = 5 - x and y = 2x - 1. They meet at the point with coordinates (2,3) so the answer is x = 2 and y = 37. Solving Method 1: If both equations are in the Example 1 Solve Linear and same form (eq. Both y = ...): $y = x^2 - 2x - 5$ and y = x - 1Quadratic 1. Set the equations **equal to each** Simultaneous other. $x^2 - 2x - 5 = x - 1$ **Equations** 2. **Rearrange** to make the equation $x^2 - 3x - 4 = 0$ equal to zero. (x-4)(x+1)=03. **Solve** the quadratic equation. 4. **Substitute** the values back in to x = 4 and x = -1one of the equations. y = 4 - 1 = 3 and v = -1 - 1 = -2Method 2: If the equations are not in the same form: Answers: (4,3) and (-1,-2) 1. **Rearrange** the linear equation into the form y = ... or x = ...Example 2 2. **Substitute** in to the quadratic Solve $x^2 + y^2 = 5$ and x + y = 3equation. 3. **Rearrange** to make the equation x = 3 - yequal to zero. $(3 - y)^2 + y^2 = 5$ 4. **Solve** the quadratic equation. $9 - 6y + y^2 + y^2 = 5$ 5. Substitute the values back in to $2y^2 - 6y + 4 = 0$ one of the equations. $y^2 - 3y + 2 = 0$ (y-1)(y-2) = 0You should get **two pairs of** y = 1 and y = 2**solutions** (two values for x, two values for y.) x = 3 - 1 = 2 and x = 3 - 2 = 1

Answers: (2,1) and (1,2)

Graphically, you should have two

points of intersection.