Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate	$\frac{1}{r}$ red
3	their probabilities.	1 3
	·	red 2
	All branches must add up to 1	black
	when adding downwards.	< 3 <u>1</u>
	This is because the probability of	4 3 red
	something not happening is 1	-black
	minus the probability that it does	2 black
	happen.	3
	паррен	
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2.	The outcome of a previous event	An example of independent events
Independent	does not influence/affect the	could be <u>replacing</u> a counter in a
Events	outcome of a second event.	bag after picking it.
3. Dependent	The outcome of a previous event	An example of dependent events
Events	does influence/affect the outcome	could be not replacing a counter in
	of a second event.	a bag after picking it.
		'Without replacement'
4. Probability	P(A) refers to the probability that	P(Red Queen) refers to the
Notation	event A will occur.	probability of picking a Red Queen
		from a pack of cards.
	P(A') refers to the probability that	P(Blue') refers to the probability
	event A will <u>not</u> occur.	that you do not pick Blue.
	<u></u> 333411	and you do not provide
	P(A ∪ B) refers to the probability	P(Blonde ∪ Right Handed) refers to
	that event A <u>or</u> B <u>or</u> both will	the probability that you pick
	occur.	someone who is Blonde or Right
	333	Handed or both.
	P(A ∩ B) refers to the probability	P(Blonde ∩ Right Handed) refers to
	that both events A and B will	the probability that you pick
	occur.	someone who is both Blonde and
		Right Handed.
5. Venn	A Venn Diagram shows the	A∪B A∩B
Diagrams	relationship between a group of	A B A B
Diagrams	different things and how they	
	overlap.	
	0.0.1dp	
	You may be asked to shade Venn	$(A \cap B)'$ $(A \cup B)'$
	Diagrams as shown below and to the	A B A B
	right.	

	$ \begin{array}{c c} A \cup B \\ \hline A \\ A \\ A \\ A \\ B \\ A \\ \hline A \\ A \\ A \\ A \\ B \\ A \\ A \\ A \\ A \\ B \\ A \\ A \\ A \\ A \\ B \\ A \\ A \\ A \\ B \\ A \\ A \\ A \\ B \\ B$	$A \cap B$ $A \cup B'$ $A \cup B'$
6. Venn Diagram Notation	∈ means 'element of a set' (a value in the set) { } means the collection of values in the set.	Set A is the even numbers less than 10. A = {2, 4, 6, 8}
	 ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A' (called 	Set B is the prime numbers less than 10. B = {2, 3, 5, 7}
	complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection)	$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$ $A \cap B = \{2\}$
7. AND rule for Probability	When two events, A and B, are independent:	What is the probability of rolling a 4 and flipping a Tails?
	$P(A \ and \ B) = P(A) \times P(B)$	$P(4 \text{ and Tails}) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened.	1st Bead 2nd Bead $\frac{3}{8}$ Red
	With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	Red $\frac{4}{9}$ Red $\frac{5}{8}$ Green $\frac{4}{8}$ Red $\frac{4}{8}$ Green