

Welcome to A-Level Chemistry!

This work is designed to help you revise your GCSE Chemistry over the summer to prepare you for starting A-Level Chemistry in September. You may find it easy, not-so-easy, tricky or really tricky. There may be some questions you can't do at all. It doesn't matter. The aim is for you to practise your Chemistry and identify your strengths and weaknesses in the subject.

Use the Road Map: Preparing to start A Level Chemistry to see what are compulsory tasks and what are optional.

If you would like further work, or an insight into the wonderful world of ASLevel Chemistry and beyond, there are some further reading suggestions at the end. There is also a list of websites you will undoubtedly find useful throughout the course and may need to use to complete this task.

Good luck and happy Chemis-trying! From the Chemistry Team.

Cardinal Newman carnosic settoo

Newman Sixth A-Level Chemistry Transition Task

This booklet gives information on the topics and skills in which you need to be completely confident before you start the first year on the A-level chemistry course.

Experience shows that students who are not secure in this knowledge and these skills find the transition from GCSE to A-level extremely challenging.

This booklet includes questions that will test your GCSE knowledge that you should complete before the start of the AS course and you will be able to selfassess your answers when you join Chemistry to find any areas that you need to focus your revision on from the start of the course. It also contains an extension opportunity: an A level sheet (including questions) that shows how you will be joining together some of the GCSE concepts you have met in an A level context.

All students starting A-level chemistry will have an assessment on the skills covered in this booklet and GCSE knowledge during the first week of term.

Items marked with * may only have been covered by those following Separate Sciences GCSEs.

COMPULSORY REVISION

Definitions:

Physical and Inorganic Chemistry

Atomic Structure:

Sub-atomic particle	Position in atom	Relative Mass	Relative charge
Proton	Nucleus	1	+1
Neutron	Nucleus	1	0
Electron	Electron shells/orbitals	$0\left(1 / 2000^{\text {th }}\right)$	-1

Acid: contains H^{+}ions, pH of 1-6, a proton donor
Activation energy: this is the minimum energy needed for a reaction to start, the minimum energy the reactant particles need to collide with for a reaction to occur between them

Alkali: contains OH^{-}ions, pH of 8-14, a proton acceptor, a soluble base
Anhydrous: without water - a non-crystalline solid (powder)
Atom economy: the ratio or percentage of the atoms usefully used compared to the total number of atoms involved in a chemical synthesis

Total M_{r} of useful products $\quad(\times 100)=$ atom economy (\%)
Total M_{r} of all reactants
*Avogadro's constant, N_{A} : is the number of particles per mole, 6.02×10^{23}
Base: a metal oxide or hydroxide, a proton acceptor.
Catalyst: a chemical that speeds up a reaction without taking part in the reaction itself
Concentration of a solution: moles of solute per $1 \mathrm{dm}^{3}$ of solute, units mol dm^{-3} or $\mathrm{g} \mathrm{dm}^{-3}$
Covalent bond: each atom sharing one electron with another atom to complete the outer shell of both atoms, occurs in non-metal-non-metal molecules or giant structures
*Empirical formula: the simplest whole number ration of atoms of each element present in a compound

Endothermic reaction: the total enthalpy of the products is higher than that of the reactants, energy is taken in by the system. The temperature of the system will reduce

Energy transferred $=$ Mass x specific heat capacity x temperature change
*Enthalpy Change: the energy change takin place in a reaction, often calculated using
Exothermic reaction: the total enthalpy of the products is lower than that of the reactants, energy is given out by the system. The temperature of the system will increase

Group: a vertical column in the Periodic Table, where all the elements in the group will have similar chemical properties due to having the same number of electrons in their outer shell. The group number tells you the number of electrons in the outer shell. The group number for metals shows you the positive charge on the ion of the metal atom. 8 -the group number for non-metals shows you the negative charge on the ion of the non-metal atom.

Hydrated: with water - a crystalline solid
lonic bond: the electrostatic force of attraction between oppositely charged ions, occurs in metal and non-metal compounds

Isotope: atoms of the same elements with different numbers of neutrons and different masses
Metal carbonate: metal ion with the carbonate ion
Metallic bond: the electrostatic attraction between the positive ions and delocalised electrons in a metallic lattice occurs between metal atoms.
*Molar gas volume: gas volume per mole, units $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
*Molar mass: mass per mole of substance, units $\mathrm{g} \mathrm{mol}^{-1}$
*Mole 'mol' : is the units from the amount of a substance
Molecular formula: the number and type of each element in a molecule
Oxidation: is loss of electrons, or gain of oxygen
*Percentage composition: the $\%$ of each element that makes up the whole of a compound
Percentage yield: the \% of a substance formed in a chemical synthesis compared to the theoretical yield calculated from the stoichiometric equation.

```
Actual yield }\times100=%\mathrm{ yield
Theoretical yield
```

Period: a horizontal row in the Periodic Table. Across a period the elements will show a recurring periodic pattern in structure, bonding, melting and boiling points, ionization energies and atomic radius. The Period number shows the number of quantum electron shells that the elements in that period will have.

Redox: this is a reaction where both oxidation and reduction happen to species taking part in the reaction

Reduction: is gain of electrons, or loss of oxygen
Relative atomic mass: Weighted mean mass of an atom compared with $1 / 12^{\text {th }}$ mass of Carbon- 12
Relative formula mass: is the sum of the relative atomic masses of the ratio of the all the atoms in a giant structure

Relative isotopic mass: mass of an isotope compared with $1 / 12^{\text {th }}$ mass of Carbon-12
Relative Molecular mass $\left(\mathrm{M}_{r}\right)$: is the sum of the relative atomic masses of all the atoms in a simple molecule

Salt: neutral compound made when an acid is neutralised, name is in two parts, the first part from the positive ion that the acid reacts with and the second part from the acid that is being neutralised

this shows a reaction is reversible, i.e. the reaction can go in both directions, and that the system is in dynamic equilibrium

COMPULSORY REVISION

Organic Chemistry

Addition polymerisation: the monomers join together to form a huge chain of monomers
Alkanes: a homologous series of saturated hydrocarbons that have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ Alkenes: a homologous series of unsaturated hydrocarbons that have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}}$ Complete combustion: combustion of a fuel in unlimited oxygen only producing carbon dioxide and water as products, releasing the maximum amount of energy from the fuel

Displayed formula: the structure of a compound showing the relative positioning of atoms and the bonds between them e.g. for ethane

Functional group: a group of atoms responsible for the characteristic reactions of a compound General Formula: the simplest algebraic formula of a member of a homologous series Homologous series: a series of organic compounds having the same functional group but with each successive member differing by CH_{2}

Hydrocarbon: a compound that only contains carbon and hydrogen atoms
Incomplete combustion: combustion of a fuel in limited oxygen that can produce a range of products including water, carbon dioxide, carbon monoxide and soot (unburnt carbon), does not release the maximum amount of energy from the fuel

Monomer: a single unit of a polymer, must contain a $\mathrm{C}=\mathrm{C}$ double bond
Polymer: many single units joined together to form a huge molecule made of repeating units of monomers whose double bonds have broken to allow them to join together

Repeat unit: the repeating unit of a polymer, usually the monomer without double bonds
Saturated organic compound: an organic compound that only contains C-C single bonds
Unsaturated organic compound: an organic compound that contains at least one $\mathrm{C}=\mathrm{C}$ double bond

Common Formula and Charges of Common Ions

Name of compound	Formula
Hydrochloric acid	HCl
Sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Nitric acid	HNO_{3}
*Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$
Sodium hydroxide	NaOH
Potassium hydroxide	KOH
Ammonia	NH_{3}

COMPULSORY REVISION

Name of ion	Formula and charge of ion
Nitrate ion	$\mathrm{NO}_{3}{ }^{-}$
Sulphate ion	$\mathrm{SO}_{4}{ }^{2-}$
Carbonate ion	$\mathrm{CO}_{3}{ }^{2-}$
Phosphate ion	$\mathrm{PO}_{4}^{3^{-}}$
Hydroxide ion	OH^{-}
EEthanoate ion	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Chloride ion	Cl^{-}
lodide ion	I^{-}
Bromide ion	Br^{-}
Zinc ion	Zn^{2+}
Silver ion	Ag^{+}
Ammonium ion	NH_{4}^{+}

Chemical Tests and Reactions

Mostly KS3:

Bubbles in a reaction show that a gas is being produced this can be described as fizzing or effervescence.

A solution must be clear i.e, you can see through it
A precipitate is a solid that is formed by reacting two solutions. The solid formed is insoluble in the liquid that also forms and will settle to the bottom of the liquid if left to stand.

Reactions of Acids:

Acid + Metal \rightarrow Salt + Hydrogen
Acid + Base \rightarrow. Salt + Water
Acid + Alkali \rightarrow Salt + Water
Acid + Metal Carbonate \rightarrow Salt + Water + Carbon Dioxide (this is also the test for a carbonate)

Acid + Ammonia \rightarrow Ammonium Salt
Displacement reactions: a more reactive element will displace a less reactive element from its compounds

Tests for gases:

Hydrogen: 'squeaky' pop test - lit splint at the top of the test tube and a squeaky pop is heard if the gas is hydrogen

Oxygen: a glowing splint is placed into the test tube and if the gas released is oxygen the splint will relight

COMPULSORY REVISION

Carbon Dioxide: bubble the gas through limewater and the limewater will turn cloudy/milky if the gas is carbon dioxide due to the presents of insoluble calcium carbonate being formed

KS4:

Test for lons:

Sulphate ion: React with Barium Hydroxide - white precipitate of Barium Sulphate forms
Carbonate ion: react with acid - Carbon Dioxide gas is given off
Chloride, Bromide and lodide ions: react with silver nitrate and chloride gives a white precipitate of silver chloride, bromide gives a cream precipitate of silver bromide and iodide gives a yellow precipitate of silver iodide

Flame tests:

Group 1 element	Flame test colour
Lithium	Red
Sodium	Orange
Potassium	Lilac

Transition elements, hydroxide precipitates:

Name of metalion	Formula of metal ion	Colour of metal hydroxide precipitate
Copper (II)	Cu^{2+}	Blue
Iron (II)	Fe^{2+}	Grey-green
Iron (III)	Fe^{3+}	Orange-brown

Test for Alkanes/Alkenes:

Add bromine water to the substance and shake. If it is an alkene the bromine water will decolourise -go from orange to colourless, if it is an alkane nothing will happen

Skills

You should be able to do the following:

- Recognise alcohols, carboxylic acids* and be able to describe the reaction to make esters
- Describe the different factors that affect the rate of a reaction and explain them using the particle theory
- Draw dot and cross diagrams of ionic and covalent bonds in some common substances

Practical science key terms

When is a measurement valid?	when it measures what it is supposed to be measuring
When is a result accurate?	when it is close to the true value
What are precise results?	when repeat measurements are consistent/agree closely with each other
What is repeatability?	how precise repeated measurements are when they are taken by the same person, using the same equipment, under the same conditions
What is reproducibility?	how precise repeated measurements are when they are taken by different people, using different equipment
What is the uncertainty of a measurement?	the interval within which the true value is expected to lie
Define measurement error	the difference between a measured value and the true value
What type of error is caused by results varying around the true value in an unpredictable way?	random error
What is a systematic error?	a consistent difference between the measured values and true values
What does zero error mean?	a measuring instrument gives a false reading when the true value should be zero
Which variable is changed or selected by the investigator?	independent variable
What is a dependent variable?	a variable that is measured every time the independent variable is changed
Define a fair test	a test in which only the independent variable is allowed to affect the dependent variable
What are control variables?	variables that should be kept constant to avoid them affecting the dependent variable

IONIC BONDING

Table salt (sodium chloride, NaCl) is our most common ionic compound. It is also an excellent exemplar of how ionic substances behave. Under a microscope, or even on your kitchen table, you can see the beautiful crystalline lattice structure. Whilst it adds flavour to our food it doesn't melt when added to hot fish and chips. However, it dissolves readily in water, providing an ideal habitat for crocodiles and other marine organisms which rely on a salty aqueous environment. Brine conducts electricity and the products of its electrolysis provide us with vital chemical ingredients for our everyday life.

1) Complete the passage below using the following words:-
loses ions ionic protons negative electrons positive gains
Atoms are neutral because they have the same number of \qquad and \qquad . . If atoms lose or gain electrons they become electrically charged and are called (they are not atoms any more). If atoms gain electrons they become \qquad ions, and if they lose electrons they become ions. When a metal reacts with a non-metal, the metal atoms \qquad electrons and the non-metal atoms \qquad electrons, forming an \qquad compound.
2) Describe the structure of sodium chloride.
3) a) Explain why ionic substances have high melting and boiling points.
b) Explain why ionic substances can conduct electricity when molten or dissolved.
c) Explain why ionic substances cannot conduct electricity when solid.

COMPULSORY QUESTIONS

4) Name the three products from the electrolysis of brine and give one example of how each is useful to us in everyday life.

Product	Use

5) Deduce the chemical formulae of the following ionic compounds:-
a) calcium chloride
d) aluminium hydroxide
b) sodium oxide
e) potassium carbonate
c) magnesium sulfide
f) calcium nitrate

COMPULSORY QUESTIONS

COVALENT BONDING

Covalently bonded molecules are everywhere! In fact, you are breathing some in (and out) as you read this. Their simple molecular structure is crucial to your survival. When you use your pencil to answer these questions you are relying on the properties of one of the World's most useful giant covalent structures, graphite. At the Brit Awards, Adele and other starlets adorn themselves with the World's strongest naturally occurring covalent structure, diamond. Which, as it just so happens, was also instrumental in the Hatten Garden robberies as a consequence of this very property!

Simple covalent molecules

1) Circle the correct answer.

Covalent bonding occurs between:-

Metal - Non-metal ; Metal - Metal ; Non-metal - Non-metal
2) How does a covalent bond form?
\qquad
\qquad
3) What are the properties of simple covalent substances such as chlorine or oxygen?

Melting point and boiling point	High/Low
Solubility in water	Soluble/Insoluble
Conduct electricity?	Conductors/Insulators
Bonding between molecules (intermolecular bonding)?	Weak/strong

4) Draw dot-and-cross diagrams of the following simple molecules:-

Methane

 Water
COMPULSORY QUESTIONS

5) Describe and explain the difference in the boiling point of water compared to chlorine and oxygen.
\qquad
\qquad
\qquad
Giant covalent structures

Structure			
Name			
Type of atoms? e.g. carbon/oxygen			
Properties			
High or low bp and mp ?			
Conductor or insulator?			
Hard or soft?			
Solubility in $\mathrm{H}_{2} \mathrm{O}$			
Uses			

SUMMARY

1) Giant covalent structures tend to have low melting and boiling points. True/false
2) Most intermolecular forces are strong and make it difficult to separate the molecules. True/false
3) Most covalent substances do not conduct electricity. True/false
4) Graphite conducts electricity. True/false
5) Graphite is slippery because the intramolecular bonds are weak covalent bonds.

True/false

Now explain your answer to each of the above statements.

BALANCING EQUATIONS

It's a key skill in chemistry. You must be able to do it. Have a go and if you are struggling, get it sorted.

Balance the following equations:-

1) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
2) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
3) $\mathrm{Fe}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
4) $\mathrm{CuO}(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
6) $\mathrm{KHCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
7) $\mathrm{Al}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{~s})$

Useful websites

MaChemGuy

MaChemGuy is a chemistry teacher with a very comprehensive YouTube channel. This is a playlist to help prepare you for year 12 chemistry. https://www.youtube.com/playlist?list=PLi6oabjl6coxUlfu8syK3KOiFXQIjwDUM

Khan Academy

Khan Academy produce lovely on-line tutorials. Brief, clear and informative. If you are struggling with equation balancing, this tutorial is well worth watching.
https://www.khanacademy.org/science/chemistry/chemical-reactions-
stoichiome/balancing-chemical-equations/v/balancing-chemical-equations-introduction

A chemical equation balancing game.
http://education.jlab.org/elementbalancing/

Acids and Alkalis

Acids and alkalis play a crucial part in our everyday lives. Indigestion is caused by excess stomach acid. Gaviscon contains an alkali to neutralise the excess acid. Our breathing is controlled by the pH of our blood. Bee stings hurt thanks to formic acid. The effects can be neutralised by bicarbonate of soda. Chemists often carry out titrations to determine unknown concentrations of acids or alkali, particularly when quality checking products. A good example is checking the concentration of alkali in fertilisers before they go on shop shelves for us to buy: too much alkali can be just as bad (if not worse) than too much acid (caused by acid rain).

1) Acids have a pH of \qquad than 7.

Alkalis have a pH of \qquad than 7.

Neutral substances have a pH of \qquad .
2) Acid + Metal \rightarrow \qquad . \qquad

Acid + Metal Oxide \rightarrow \qquad $+$ \qquad

Acid + Metal Hydroxide \rightarrow \qquad $+$ \qquad
Acid + Metal Carbonate \rightarrow \qquad $+$ \qquad $+$ \qquad
3) Mr Withers needs to know how acidic the soil is in the school grounds. He decides to ask the chemistry A Level students to find out by doing a titration. They decide to use sodium hydroxide as their alkali of known concentration.
a) Fill in the boxes to balance the equation for this reaction.
$\mathrm{NaOH}+\square \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\square \mathrm{H}_{2} \mathrm{O}$
b) The chemistry students use $24.2 \mathrm{~cm}^{3}$ of sulfuric acid, extracted from the soil, to neutralise $25.0 \mathrm{~cm}^{3}$ of $0.010 \mathrm{moldm}^{-3}$ sodium hydroxide. Determine the concentration of sulfuric acid in the school soil.

REDUX

Without redox we wouldn't be able to get energy from our food. On a slightly less essential level, batteries and hydrogen fuel cells rely on redox to switch on torches and power modern cars. The key rule to remember in redox is that "the electrons have got to go somewhere!"....more on that in lesson time.

1) What is "redox"?
\qquad
2) Give two examples of useful redox reactions in everday life excluding those mentioned above (there are millions!).
3)
4)
5) What does oxidation mean?
\qquad
6) What does reduction mean?
\qquad
7) Which element is oxidised and which is reduced in the reaction below?

Oxidised
Reduced \qquad

COMPULSORY QUESTIONS

6) Many elements have variable oxidation states.

What does this mean and how is it useful to us?
\qquad
\qquad
7) The ore haematite contains iron(III) oxide. Iron is extracted from this ore by reduction with carbon.

The products of this reaction are iron and carbon dioxide.
(a) Finish this symbol equation for the reaction.
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ \qquad $C \rightarrow$ \qquad $+$ \qquad
(b) A haematite ore contains 80% by mass of iron(III) oxide.

Calculate the maximum mass of iron that can be extracted from each tonne of this ore.

Show each step of your calculation as indicated below.
HINTS: 1 tonne $=1000 \mathrm{~kg}$; relative atomic mass $\left(A_{r}\right) \mathrm{Fe}=56,0=16$
mass of iron(III) oxide in 1 tonne of haematite $=$ \qquad kg
formula mass of iron(III) oxide $=$ \qquad
mass of iron in 1 tonne of haematite $=$ \qquad kg

Calculations are a part of every chemist's world. They are sometimes something that A Level students find tricky but you can do it! The key is to sort out anything you don't understand and get plenty of practice to improve your confidence. These calculations build up in difficulty to those found on AS Level papers. Give them a shot; you may be surprised by how much you can do.

1) Magnesium sulfate is one of the chemicals in detergent powder.

Ana makes some magnesium sulfate using this reaction.
magnesium carbonate + sulfuric acid \rightarrow magnesium sulfate + water + carbon dioxide
$\mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
a) The theoretical yield for Ana's experiment is 12.0 g .

Ana dries and weighs the magnesium sulfate she makes. This is her actual yield.
Actual yield $=10.8 \mathrm{~g}$.
Work out the percentage yield for Ana's experiment.
percentage yield = \qquad
b) The relative formula mass of magnesium carbonate is 84 .

The relative formula mass of magnesium sulfate is 120.

Calculate the mass of magnesium carbonate that must react with sulfuric acid to produce 12.0 g of magnesium sulfate.
mass of magnesium carbonate $=$

COMPULSORY QUESTIONS

2) A compound containing magnesium, silicon and oxygen is also present in rock types in Italy. A sample of this compound weighing 5.27 g was found to have the following composition by mass:

Mg 1.82 g; Si $1.05 \mathrm{~g} ; 02.40 \mathrm{~g}$
Calculate the empirical formula of the compound.
Show your working.
3) A student heats 12.41 g of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$, to remove the water of crystallisation. A white powder called anhydrous sodium thiosulfate forms.
a) What does the term "anhydrous" mean?
b) What is the relative formula mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
c) Calculate the expected mass of anhydrous sodium thiosulfate that forms.

ANSWERS

Ionic Bonding

1) Complete the passage below using the following words:
loses ions ionic protons negative electrons positive gains
Atoms are neutral because they have the same number of protons and electrons. If atoms lose or gain electrons they become electrically charged and are called ions (they are not atoms any more). If atoms gain electrons they become negative ions, and if they lose electrons they become positive ions. When a metal reacts with a non-metal, the metal atoms lose electrons and the non-metal atoms gain electrons, forming an ionic compound.
2) Sodium chloride is a giant ionic lattice. It contains sodium ions (Na^{+}) and chloride ions $\left(\mathrm{Cl}^{-}\right)$. The ionic bonds in sodium chloride are strong and are created by the attraction between the oppositely charged ions.
3) a) Ionic substances form giant ionic lattices containing oppositely charged ions. Strong ionic bonds between the ions result in high melting and boiling points because a lot of energy is needed to break these bonds.
b) The ions are charged particles. When molten or dissolved the ions are free to move enabling them to conduct electricity.
c) In solid crystal lattices the ions are not free to move therefore they cannot conduct electricity.
4)

Product	Use
Hydrogen	Making margarine Hydrogen fuel cells
Chlorine	Killing micro-organisms in e.g. swimming pool water and drinking water
Sodium hydroxide	Making soap

5) a) Calcium chloride CaCl_{2}
b) Sodium oxide $\mathrm{Na}_{2} \mathrm{O}$
c) Magnesium sulfide MgS
d) Aluminium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$
e) Potassium carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}$
f) Calcium nitrate $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

Covalent Bonding

1) Circle the covalent bond:-

Metal - Non-metal ; Metal - Metal ; Non-metal - Non-metal
2) How does a covalent bond form?

Covalent bonds are predominantly a result of two non-metal atoms sharing a pair of electrons. There is then an attraction between the shared electron pair (negative) and the oppositely charged (positive) nuclei. The electrons involved are in the highest occupied energy levels (outer shells) of the atoms. Sometimes atoms form multiple covalent bonds by sharing more than one electron pair. The number of covalent bonds formed tends to depend on the group number (8-group number).
3) Properties of simple covalent molecules such as chlorine and oxygen:-

Melting point and boiling point	High/Low
Solubility in water	Soluble/Insoluble
Conduct electricity?	Conductors/Iksulators
Bonding between molecules (intermolecular bonding)?	Neak/strong

4)

4. Water has a relatively high boiling point compared to other simple covalent molecules such as chlorine and oxygen. This is because hydrogen bonds form between water molecules. These bonds are much stronger than the weak intermolecular forces (Instantaneous dipole-dipole interactions or London dispersion forces) between molecules such as chlorine and oxygen. Therefore a lot more energy is needed to break the hydrogen bonds between water molecules than is required to overcome the weak forces of attraction between chlorine or oxygen molecules.

Structure			
Name	Graphite	Diamond	Silicon dioxide
Type of atoms? e.g. carbon/oxygen	Carbon	Carbon	Silicon Oxygen
Properties			
High or low bp and mp ?	High	High	High
Conductor or insulator?	Conductor	Insulator	Semi-conductor
Hard or soft?	Hard	Soft and slippery	Hard
Uses	Pencil "lead"	Jewellery Cutting and precision tool	Electronics (Transistors)

SUMMARY

1) False - giant covalent structures have strong bonds which need large amounts of energy to break them.
2) False - intermolecular forces are weak
3) True - covalent molecules do not have free electrons or ions to carry a charge (with the exception of graphite)
4) True - Graphite contains delocalised electrons which can carry a charge through the hexagonal layers.
5) False - Intramolecular covalent bonds are strong. Graphite is slippery due to the weak intermolecular forces.

Balancing Equations

1) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
2) $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
3) $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
4) $\mathrm{CuO}(s)+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
6) $2 \mathrm{KHCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
7) $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$

Acids and Alkalis

1) Acids have a pH of less than 7 .

Alkalis have a pH of more than 7.
Neutral substances have a pH of 7.
2) Acid + Metal \rightarrow salt + hydrogen

Acid + Metal Oxide \rightarrow salt + water
Acid + Metal Hydroxide \rightarrow salt + water
Acid + Metal Carbonate \rightarrow salt + water + carbon dioxide

3a) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
b) Moles $\mathrm{NaOH}=0.025 \times 0.01$
$=0.00025$
Moles $\mathrm{H}_{2} \mathrm{SO}_{4}=0.000125$
Concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.000125 / 0.0242$
$=0.00517 \mathrm{M}$

Redox

1) Redox is the oxidation of one element together with the reduction of another element during a chemical reaction.
2) Two examples of useful redox reactions in everyday life:-
3) Combustion of fossil fuels
4) Respiration
5) Photosynthesis
6) An element losing electrons.
7) An element gaining electrons.
8) Oxidised: Carbon

Reduced: Zinc
6) Elements with variable oxidation states are able to lose or gain different numbers of electrons depending on their environment. For example, iron can exist as Fe^{2+} and Fe^{3+} ions.

7 (a) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{Fe}$
(b)

Mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=80 / 100 \times 1000$
$=800 \mathrm{~kg}$
Moles $\mathrm{Fe}_{2} \mathrm{O}_{3}=800 / 160$
$=5$

Moles $\mathrm{Fe}=5 \times 2$
$=10$
Mass $\mathrm{Fe}=10 \times 56$
$=560 \mathrm{~kg}$

Calculations

1a) Percentage yield $=10.8 / 12 \times 100$
$=90 \%$

1b) $\mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Moles $\mathrm{MgSO}_{4}=12.0 / 120$
$=0.1$
Moles $\mathrm{MgCO}_{3}=0.1$
Mass $\mathrm{MgCO}_{3}=0.1 \times 84$
$=8.4 \mathrm{~g}$
2) $\operatorname{Mg} 1.82 / 24:$ Si $1.05 / 28: O 2.4 / 16$

Mg 0.07583 : Si $0.0375: 00.15$
Mg 0.07583/0.0375: Si 0.0375/0.0375: O 0.15/0.0375
Mg 2:Si 1 : O 4
Empirical formula $=\mathrm{Mg}_{2} \mathrm{SiO}_{4}$

3a) Anhydrous means without water.
b) $\mathrm{RFM} \mathrm{Na} \mathrm{Na}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=23 \times 2+32 \times 2+16 \times 3+5 \times 18$
$=248$
c) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O}$

Moles $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}=12.41 / 248$
$=0.05$
Moles $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ produced $=0.05$
Mass $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=0.05 \times 158$
$=7.9 \mathrm{~g}$

COMPULSORY QUESTIONS

Vocabulary

Each of the definitions below is for a common word or term used in chemistry. Identify the correct word or term to go with each definition and write it in the space provided.

Pe	
The smallest particle of an element	
Positive nuclei held together by delocalised electrons	
Different physical structures of atoms of the same element	
The change in concentration of a reactant or product over time	
Chemically combined elements in a fixed ratio	
Able to dissolve in a particular solvent	
Breaking a substance apart using an electrical current	
A reaction in which a substance is burned in oxygen	
A substance able to speed up a chemical reaction that remains unchanged after the reaction is complete	
A bond formed by the sharing of a pair of electrons	
Negatively charged particle found within atoms	
The loss of electrons	
The reaction between an acid and a base to produce water and a solution of pH 7	
A bond formed by the exchange of electrons and resulting attraction between ions	
Positively charged particle found within atoms	
A type of reaction that gives out heat and causes a rise in temperature	
Centre of an atom, containing protons and neutrons	
Gain of electrons	
Particle with no charge found within atoms	
The amount of a dissolved substance in a given volume of solvent	
A type of reaction that takes in heat and causes a decrease in temperature	
A charged particle	
A more reactive element taking the place of a less reactive element	

\qquad

-K, Y- 46

Every substance around you is made from atoms. But what is an atom and what does an atom contain?

In the space below produce a drawing that shows what makes up an atom. You should label your diagram fully and give explanations where necessary.

Once you are happy that you have included everything, compare it with the completed diagram in the Answers to check you have all the essential points.
armerat-

COMPULSORY QUESTIONS

Chemical Equations and Reactions

Chemists tell the story of reactions by using equations. These can be word equations, which give the names of chemicals, but most often they use formulae equations, You are going to study a series of equations and interpret the information they can tell you.

Task 1

Write word equations for each of the following formulae equations:
$1 \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$3 \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
$5 \quad 2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}$

Task 2

Choosing from displacement, thermal decomposition, neutralisation, polymerisation or combustion, identify which type of reaction is occurring for each of the following formulae equations:
$1 \mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq) }}+2 \mathrm{NaOH}_{\text {(aq) }} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4 \text { (ac) }}+2 \mathrm{H}_{2} \mathrm{O}_{\text {al }}$
$2 \mathrm{CuCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CuO}{ }_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$3 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})} \rightarrow \mathrm{MgSO}_{4(\mathrm{aq})}+\mathrm{Cu}_{\text {(s) }}$
$4 \mathrm{CH}_{4(9)}+2 \mathrm{O}_{2(9)} \rightarrow \mathrm{CO}_{2(9)}+2 \mathrm{H}_{2} \mathrm{O}_{0)}$
$5 \mathrm{nC}_{2} \mathrm{H}_{4} \rightarrow\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]_{n}$

Task 3

Balance the following equations:
$1 \mathrm{HCl}+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$2 \mathrm{Li}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{LOH}+\mathrm{H}_{2}$
$3 \quad \mathrm{C}_{3} \mathrm{H}_{\mathrm{g}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{~K}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
$5 \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

COMPULSORY QUESTIONS

Chemical Bonding

Atoms can join together to form molecules of elements and chemical compounds. They do this by using bonds. Complete the following table on the different types of bonding.

Endothermic and Exothermic Reactions

All chemical reactions invoive bonds being broken and bonds being formed. Every time a bond is broken or formed, energy is either required or released by the reaction. These energy transfers that occur during reactions cause temperature changes. The amount of energy required or released depends on the bond being broken or formed.

Methane, CH_{4}, reacts with oxygen in the following way:

$$
\mathrm{CH}_{4(9)}+2 \mathrm{O}_{2(9)} \rightarrow \mathrm{CO}_{2(9)}+2 \mathrm{H}_{2} \mathrm{O}_{0}
$$

		(0) llmio	
$\mathrm{C}-\mathrm{H}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{C}=0$	$\mathrm{H}-\mathrm{O}$
412	496	743	463

1 Use the average bond enthalpies provided to calculate the energy change for this reaction. Show all your workings.

2 Would this energy change be endothermic or exothermic?
3 What would happen to the temperature during this reaction?
4 Sketch an 'energy level diagram' to represent this reaction.

Handling Numbers

The ability to work with numbers is essential for chemistry, from working out how many moles of a substance you have produced to calculating an energy change for a reaction. Numbers you will encounter in chemistry will range from the incredibly small, for example the radius of an individual atom, to the incredibly large, for example the number of atoms in a mole of an element. The following number-handling skills will be needed throughout your chemistry studies.

Decimal places

Answers to calculations aren't always whole numbers. The calculator will show a 'decimal point' after the whole number and then one or more numbers, for example 12.5 - this is read as ' 12 point five' and means 12 and a half, or exactly halfway between 12 and 13 .

More usually calculators display lots of numbers after the decimal point, and you will need to decide how many of these numbers to use in each stage of your calculations and how many to write down when you give an answer. Each number after the decimal point is referred to as a 'decimal place'.

Decimal place is abbreviated to 'dp' and exam papers will often ask you to give answers to a certain number of decimal places, usually two. This is written as '2dp'. If this isn't the case, it's best to write down any answer with all the decimal places shown and then round up or down to two decimal places.

If a calculation gave an answer of 4.87509545 , there are eight decimal places shown. This would be written as:

- 4.9 to 1dp
- 4.88 to 2 dp
- 4.875 to 3dp
- 4.8751 to 4 dp , and so on

You may have noticed that the last decimal place often differs from the original number - if you aren't sure why, read the section below on rounding up or rounding down.

Rounding up and rounding down

Once you know how many numbers after the decimal point you need to include, you may need to 'round up' or 'round down'. This is because if the first number you are not including is closer to the next highest whole number, it's too big to ignore.

If you were asked to quote 7.083754 to 1 dp , it would become 7.1 - the eight that comes after the zero is too large to ignore, so you have to round up the preceding number (in this case the zero). If you had been asked to quote the same number to 2 dp , however, it would be 7.08 - the eight wouldn't change because the three that comes after it is small enough to ignore, so you round down and keep the preceding number the same.

The general rule is: find the number that represents the last decimal place you need to quote. If the next number is smaller than five, round down (you won't change the last decimal place you quote). If it is five or more, round up (the last decimal place you quote will increase by one).

Ghowin will

0 ω

COMPULSORY REVISION

Handling Numbers

0
nis
m
".
You can only round up or down once. If you rounded 55.445 up to 55.45 , you cannot then round this up to 55.5 , as 55.445 to 1 dp is only 55.4 .

When carrying out calculations, it is best to leave rounding up and down until you have your final answer. If you round up or down too early you may end up with the wrong figure at the end.

Significant figures

Significant figures are useful when quoting numbers to a certain number of decimal places isn't appropriate.

If you quoted 0.0002 to 2 dp , it would appear that you had a value of zero (0.00) but the two, which has been ignored, may be highly important (for example, the required concentration of a poison): it is significant.

Significant figures (sig. fig. or SF for short) are numbers that tell you something about the magnitude (rough size) of a figure. You start counting significant figures as soon as you come across a non-zero number reading from left to right. Zeros between other numbers and at the end of numbers are classed as significant also. Where the decimal place is has no bearing on whether a number is significant or not - all numbers are significant as soon as you encounter a number that isn't zero.

All of the following are quoted to three significant figures:

- 3.67
- 0.000000899
- 4.01
- 7.00

Scientific notation (standard form)

Some numbers in science are just so large that they would take too long to write out in their full form, so we use shorthand called 'scientific notation' or 'standard form'.

This shorthand always takes the form of a number between 1.0 and 9.9 multiplied by 10 raised to a given power, for example 3.6×10^{3} (this would be read as 'three point six times 10 to the power of three').

Consider the number 100,000 . If we write this in scientific notation it becomes 1.0×10^{5}, because if we multiply 1.0 by 10^{5}, we get 100,000 . A simple way to remember how to convert numbers into scientific notation is to imagine that the power the number 10 is raised to tells you how many numbers the decimal place needs to 'leapfrog' over to get back to its place in the longhand answer.

It is often helpful to draw this out:

COMPULSORY QUESTIONS

Handling Numbers

 -

It works for very small numbers too, except the decimal place has to leapfrog backwards, so the scientific notation shows a number between 1.0 and 9.9 multiplied by 10 raised to a negative power, for example 1.0×10^{-5} is 0.00001 .

Questions

COMPULSORY REVISION

S1 Uhits

Chemists across the world need to be able to communicate with one another. For this reason it is important that all chemists know the units of measurement to follow. It would be very difficult if a chemist in one country set out to check and confirm another chemist's experimental results by measuring something out in pounds and ounces if the original work was done in another country, working in grams!

A universal set of base units has been established that tells scientists the correct units of measurement to work with. They are known as SI units, which stands for Système International d'Unités. The Sl units you are likely to encounter in A-level chomistry are outlined in the table below:

Whid dithbotg rio	(1) Mif iem	
Length	Metre (m)	$1 \mathrm{~m}=100 \mathrm{~cm}$
		$1 \mathrm{~m}=1000 \mathrm{~mm}$
		$1 \mathrm{~m}=1,000,000 \mu \mathrm{~m}$ (micrometres)
Time	Seconds (s)	$1 \text { minute }=60 \mathrm{~s}$
		$1 \text { hour }=3600 \mathrm{~s}$
		1 day $=24$ hours
Temperature	Kelvin (K)	Temperature in $\mathrm{K}=$ temperature in ${ }^{\circ} \mathrm{C}+273.15$
Mass	Kilogram (kg)	$1 \mathrm{~kg}=1000 \mathrm{~g}$
		$1 \mathrm{~g}=1000 \mathrm{mg}$
		$1 \mathrm{~g}=1,000,000 \mu \mathrm{~g}$ (micrograms)
		1 tonne $=1000 \mathrm{~kg}$
Amount of substance	Mole (mol)	1 mole $=6.02 \times 10^{23}$ atoms or molecules
		Mass of 1 mole of an atom = that atom's atomic mass ing

You will not always be required to work in SI units in your studies; for example, you will usually work in Celsius when measuring temperature and in grams rather than kilograms when recording mass. However, you must be aware of how to convert measurements into SI units.

COMPULSORY QUESTIONS

SI Units

Eonverthe following nto si units

4.2. 30 minules

 - 8. 806×10^{24} atoms of a given element
 10 - 12 carbon into moles carbonsatomic

COMPULSORY REVISION

Calculator Skills

You are going to be building a strong friendship over the course of your A-level Chemistry studies... with your scientific calculator!

A scientific calculator is an invaluable tool for any chemist, so you need to be confident about using it, and you will need to practise using some of the functions to make sure you don't get calculations wrong.

Obviously the calculator described here may not be exactly the same as yours, in which case check the instruction booklet that came with your calculator so you can find the equivalent functions - and do this long before any exams.

The functions you are most likely to need are as follows:

(1)

It doesn't matter which order division or multiplication and addition or subtraction happen in, except if they are the only functions needed for a calculation, in which case you should work from left to right.

COMPULSORY QUESTIONS

Calculator Skills

Questions

Eemplete these questions, using your scientifie caloulator where required, Questions one to five test your knowedge of BEDAS, complete these without a ealeulator first to cheek how
well you have under stood this rule:

COMPULSORY REVISION

Rearranging Equations

An equation is a mathematical way of showing a relationship between two or more variables. For example, ' $a=b+c$ ' tells us that ' a ' is the same as ' b ' and ' c ' added together' a, b and c could stand for anything, for example 'a' (total revision time) $=$ ' b ' (maths revision time) + ' c ' (chemistry revision time).

Symbolic equations (equations that contain symbols) are used extensively in chemistry and you must be confident at rearranging them and recognising the symbols they contain.

How do I rearrange an equation?

Equations show individual variables and how these are connected; they will be connected by operations such as ' + ', '-', ' - ', ' \times 'and ' $\sqrt{ }$ '.

Operations can be thought of as coming in pairs, where the two operations forming the pair perform opposite functions.

	rons
+ (addition)	- (subtraction)
x (multiplication)	\div (division) division is sometimes written as /
x^{2} (square)	$\sqrt{ }$ (square root)

'Rearranging an equation' means re-writing it in a new order, so a different variable is on its own and equal to some combination of all the others. This variable becomes the subject of the equation.

The key thing to remember when rearranging equations is that you must do the same things to both sides of the equation (the left and right side of the ' $=$ ' sign).

Returning to ' $a=b+c$ ', if we had values for just ' a ' and ' c ', we would need to rearrange this to make ' b ' the subject to be able to find its value.

As the equation is written, ' b ' is being added to ' c ', so to 'undo' this we need to perform the opposite operation. In this case we need to subtract ' c ' from both sides of the equation, giving:

What if the equation is more complicated?

Let's imagine we want to find a value for ' c ' in the following equation:

COMPULSORY QUESTIONS

Rearranging Equations

So, step 1 is to multiply both sides by ' d ', giving:

Step 2 is to take the square root of both sides, giving:

$$
\begin{aligned}
& \sqrt{\mathrm{abd} \dot{d}}=\left(\sqrt{\mathrm{c}^{2}}\right) \\
& o r, c=\sqrt{\mathrm{abd}}
\end{aligned}
$$

Students often get confused when symbols within equations are unusual or unfamiliar. Take your time - the process is always the same, no matter what the equation. Identify the symbol you need as the subject, then just unpick the equation one step at a time by using opposite operations. But remember - you must always do the same to both sides.

Questions

COMPULSORY REVISION

Chemical Formulae

If you buy a piece of furniture that needs to be assembled, you are provided with a set of instructions to tell you the parts you need and how it fits together. A chemical formula is exactly that too - it tells you what elements are needed for a given compound or molecule and the ratios you need them in.

Chemical formulae are written in shorthand, using the element symbols found on the periodic table.

Most people know the formula for water is $\mathrm{H}_{2} \mathrm{O}$, but what does that actually mean?

Sometimes formulae contain brackets. These show groups of elements within compounds. Any number immediately outside the bracket tells you how many of these groups are present. For example, when magnesium reacts with water, one of the products is magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$.

Simple chernical names can usually be worked out from looking at the formula. If a metal is present, it will come first in the compound name. Subsequent chemicals will come next, and their name endings will change depending on the type of compound they form.

- The ending '-ide' tells you a compound has been formed from only two elements (it won't necessarily be just two atoms though), for example sodium chloride, NaCl
- The ending '-ate' tells you the compound has been formed from more than two elements, one of them being oxygen, for example calcium carbonate, CaCO_{3}

If a prefix is added to an element's name, this tells you how many of its atoms are involved in the compound. (Some prefixes are different when naming hydrocarbon chains however.)

- 'Mono' (sometimes abbreviated to 'mon') means one; for example carbon monoxide, CO, contains one oxygen atom

COMPULSORY QUESTIONS

Chemical Formulae

- 'Di' means two; for example carbon dioxide, CO_{2}, contains two oxygen atoms
- 'Tri' means three; for example boron trifluoride, BF_{3}, contains three fluorine atoms
- 'Tetra' means four; for example carbon tetrafluoride, CF_{4}, contains four fluorine atoms
- 'Hexa' means six; for example sulphur hexafluoride, $\mathrm{SF}_{6 \text {, }}$ contains six fluorine atoms

Questions

It. Wow many atoms of oxygen are represented in the formula for sulbluric acd in $H \mathrm{SO}_{4}$?
2. Low many atoms of silver are represented in the formula for silve nitrato, AgNO? $\rightarrow 4$ 33 How many atoms of hydrogen are represented in the formula or calcium hydroxide: Traik Ca(OH)?

5. How many aton in total are represented in the formula tor manganese hydroxide; $\mathrm{Mn}(\mathrm{OH})_{2}$?

 ⒎ What is the name of NgOP ,

 H3 1 Whan

11. Predict the formula for calcium oxide

14. One borylium atom can bond with two chorine atoms. What wo uld the name and formula of the product of this seaction be?
15. What is the name of ??

 Marmituld
 Githet
㖺 TH. Hzrthert.
 (4)

 Tink Mr Met

 Whawtutuk

 NKM ィTM K K K M-
 Th RME
 - Trex,

COMPULSORY REVISION
 Balancing Chemical Equations

It is essential to be able to balance chemicai equations, and as long as you follow some general rules and think logically about how to do this, it needn't cause you too much of a headache.

Chemical formulae tell you which elements are in compounds or molecules and the ratios they are in; these facts can't change, if they did, you would no longer have the same chemical. A simple analogy for this is a kitchen table and its component parts: a table top and four legs. Lets give the table top the symbol ' T ' and the legs the symbol ' L '. If we wrote an equation for constructing the table it would be:

All the individual formulae are fixed; all you are able to change is how many of each component you can use up. You can't just change the table's formula to TL_{2} because the table would fall over!

It's the same for chemicals: water is always $\mathrm{H}_{2} \mathrm{O}$, oxygen is always O_{2}, chlorine is always Cl_{2}, sulphuric acid is always $\mathrm{H}_{2} \mathrm{SO}_{4}$, and so on. You camnot and must not change the numbers within formulae when you balance equations, as that would change the chemical. And, equally as important, the parts you had at the beginning must all still be there at the end (that is, on either side of the arrow), just in different combinations.

Balancing equations can sometimes seem confusing when you have to consider how all the chemicals are typically found. Let's return to our table analogy. If table tops are always bought as packs of two, you can't just make a single table so you'd need more legs. The equation would now be:

 Whby

It's exactly the same with chemicals, we cannot change
how the chemicals are found, so all we can do is change the amount of them we use, by changing the numbers in front of the formulae.

Consider sodium and chlorine reacting to form sodium chloride. First, write out the element symbols, showing how they are found naturally, with reactants on the left and products on the right, then count how many of each atom is present at the start:

Now adjust the numbers in front of the formulae until the numbers of each atom match at the beginning and end of the reaction. If we make another NaCl (that is, 2 NaCl) and add another sodium at the start, it will balance:

Finally, remember that in a balanced equation each element symbol actually represents one mole of that element (see Task 26 if you are unsure on moles), so it is possible to have half a mole of an element as that's actually $3.01 \times$ 10^{23} atoms; this can sometimes help balance the equation.

 Magly hiliccd

COMPULSORY QUESTIONS

4.

Balancing Chemical Equations

For example, when carbon monoxide is formed as follows you could write the equations in either of these ways:

$$
\mathrm{C} \rightarrow \frac{1 \mathrm{O}}{2} \rightarrow \mathrm{CO} \quad \mathrm{OR}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}
$$

Mrogumide 5likg impin

Questions

COMPULSORY REVISION

Maths skills

1 Core mathematical skills

A practical chemist must be proficient in standard form, significant figures, decimal places, SI units, and unit conversion.

1.1 Standard form

In science, very large and very small numbers are usually written in standard form. Standard form is writing a number in the format $A \times 10^{\times}$where A is a number from 1 to 10 and x is the number of places you move the decimal place.

For example, to express a large number such as $50000 \mathrm{~mol} \mathrm{dm}^{-3}$ in standard form, $\mathrm{A}=5$ and $\mathrm{x}=$ 4 as there are four numbers after the initial 5.

Therefore, it would be written as $5 \times 10^{4} \mathrm{~mol} \mathrm{dm}^{-3}$.
To give a small number such as $0.00002 \mathrm{Nm}^{2}$ in standard form, $\mathrm{A}=2$ and there are five numbers before it so $x=-5$.
So it is written as $2 \times 10^{-5} \mathrm{Nm}^{2}$.

Practice questions

1 Change the following values to standard form.
a boiling point of sodium chloride: $1413{ }^{\circ} \mathrm{C}$
b largest nanoparticles: $0.0001 \times 10^{-3} \mathrm{~m}$
c number of atoms in 1 mol of water: 1806×10^{21}
2 Change the following values to ordinary numbers.
a 5.5×10^{-6}
b 2.9×10^{2}
c 1.115×10^{4}
d 1.412×10^{-3}
e 7.2×10^{1}

1.2 Significant figures and decimal places

In chemistry, you are often asked to express numbers to either three or four significant figures. The word significant means to 'have meaning'. A number that is expressed in significant figures will only have digits that are important to the number's precision.

It is important to record your data and your answers to calculations to a reasonable number of significant figures. Too many and your answer is claiming an accuracy that it does not have, too few and you are not showing the precision and care required in scientific analysis.

For example, 6.9301 becomes 6.93 if written to three significant figures.
Likewise, 0.00043456 is 0.000435 to three significant figures.
Notice that the zeros before the figure are not significant - they just show you how large the number is by the position of the decimal point. Here, a 5 follows the last significant digit, so just as with decimals, it must be rounded up.
Any zeros between the other significant figures are significant. For example, 0.003018 is 0.00302 to three significant figures.

Sometimes numbers are expressed to a number of decimal places. The decimal point is a place holder and the number of digits afterwards is the number of decimal places.
For example, the mathematical number pi is 3 to zero decimal places, 3.1 to one decimal place, 3.14 to two decimal places, and 3.142 to three decimal places.

COMPULSORY QUESTIONS

Practice questions

3 Give the following values in the stated number of significant figures (s.f.).
a 36.937 (3 s.f.)
b 258 (2 s.f.)
c 0.04319 (2 s.f.)
d 7999032 (1
s.f.) 4

Use the equation:
number of molecules $=$ number of moles $\times 6.02 \times 10^{23}$ molecules per mole to calculate the number of molecules in 0.5 moles of oxygen. Write your answer in standard form to 3 s.f.
5 Give the following values in the stated number of decimal places (d.p.).
a 4.763 (1 d.p.)
b 0.543 (2 d.p.)
c 1.005 (2 d.p.)
d 1.9996 (3 d.p.)

1.3 Converting units

Units are defined so that, for example, every scientist who measures a mass in kilograms uses the same size for the kilogram and gets the same value for the mass. Scientific measurement depends on standard units - most are Système International (SI) units.
If you convert between units and round numbers properly it allows quoted measurements to be understood within the scale of the observations.

Multiplication factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n

Unit conversions are common. For instance, you could be converting an enthalpy change of $488889 \mathrm{~J} \mathrm{~mol}^{-1}$ into $\mathrm{kJ} \mathrm{mol}^{-1}$. A kilo is 10^{3} so you need to divide by this number or move the decimal point three places to the left.
$488889 \div 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1}=488.889 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Converting from $\mathrm{mJ} \mathrm{mol}^{-1}$ to $\mathrm{kJ} \mathrm{mol}^{-1}$, you need to go from 10^{3} to 10^{-3}, or move the decimal point six places to the left.
$333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ is $0.000333 \mathrm{~kJ} \mathrm{~mol}^{-1}$
If you want to convert from $333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ to $\mathrm{nJ} \mathrm{mol}^{-1}$, you would have to go from 10^{-9} to 10^{-3}, or move the decimal point six places to the right.
$333 \mathrm{~mJ} \mathrm{~mol}^{-1}$ is $333000000 \mathrm{~nJ} \mathrm{~mol}^{-1}$

Practice questions

6 Calculate the following unit
conversions. a $300 \mu \mathrm{~m}$ to m
b 5 MJ to mJ
c 10 GW to kW

COMPULSORY QUESTIONS

2 Balancing chemical equations

2.1 Conservation of mass

When new substances are made during chemical reactions, atoms are not created or destroyed - they just become rearranged in new ways. So, there is always the same number of each type of atom before and after the reaction, and the total mass before the reaction is the same as the total mass after the reaction. This is known as the conservation of mass.

You need to be able to use the principle of conservation of mass to write formulae, and balanced chemical equations and half equations.

2.2 Balancing an equation

The equation below shows the correct formulae but it is not balanced.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
While there are two hydrogen atoms on both sides of the equation, there is only one oxygen atom on the right-hand side of the equation against two oxygen atoms on the left-hand side. Therefore, a two must be placed before the $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Now the oxygen atoms are balanced but the hydrogen atoms are no longer balanced. A two must be placed in front of the H_{2}.
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
The number of hydrogen and oxygen atoms is the same on both sides, so the equation is balanced.

Practice questions

1 Balance the following equations.
a $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}$
b $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
c $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

2.3 Balancing an equation with fractions

To balance the equation below:
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\square \quad$ Place a two before the CO_{2} to balance the carbon atoms.
$\square \quad$ Place a three in front of the $\mathrm{H}_{2} \mathrm{O}$ to balance the hydrogen atoms.
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
There are now four oxygen atoms in the carbon dioxide molecules plus three oxygen atoms in the water molecules, giving a total of seven oxygen atoms on the product side.
$\square \quad$ To balance the equation, place three and a half in front of the O_{2}.
$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\square \quad$ Finally, multiply the equation by 2 to get whole numbers.
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

COMPULSORY QUESTIONS

Practice questions

2 Balance the equations below.
a $\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
b $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

2.4 Balancing an equation with brackets

$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
Here the brackets around the hydroxide $\left(\mathrm{OH}^{-}\right)$group show that the $\mathrm{Ca}(\mathrm{OH})_{2}$ unit contains one calcium atom, two oxygen atoms, and two hydrogen atoms.
To balance the equation, place a two before the HCl and another before the $\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Practice questions

3 Balance the equations below.
a $\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
b $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3}$

3 Rearranging equations and calculating concentrations

3.1 Rearranging equations

In chemistry, you sometimes need to rearrange an equation to find the desired values.
For example, you may know the amount of a substance (n) and the mass of it you have (m), and need to find its molar mass (M).
The amount of substance (n) is equal to the mass you have (m) divided by the molar mass (M) :

$$
n=\frac{m}{M}
$$

You need to rearrange the equation to make the molar mass (M) the subject.
Multiply both sides by the molar mass (M):

$$
M \times n=m
$$

Then divide both sides by the amount of substance (n):

$$
m=\frac{m}{N}
$$

Practice questions

1 Rearrange the equation $c=\frac{n}{V}$ to make:
a n the subject of the equation
b V the subject of the equation.
2 Rearrange the equation $P V=n R T$ to make:
a n the subject of the equation
b T the subject of the equation.

COMPULSORY QUESTIONS

3.2 Calculating concentration

The concentration of a solution (a solute dissolved in a solvent) is a way of saying how much solute, in moles, is dissolved in $1 \mathrm{dm}^{3}$ or 1 litre of solution.

Concentration is usually measured using units of $\mathrm{mol} \mathrm{dm}^{-3}$. (It can also be measured in $\mathrm{g} \mathrm{dm}^{3}$.)
The concentration of the amount of substance dissolved in a given volume of a solution is given by the equation:

$$
c=\frac{n}{V}
$$

where n is the amount of substance in moles, c is the concentration, and V is the volume in dm^{3}.

The equation can be rearranged to calculate:
\square the amount of substance n, in moles, from a known volume and concentration of solution
\square the volume V of a solution from a known amount of substance, in moles, and the concentration of the solution.

Practice questions

3 Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of a solution formed when 0.2 moles of a solute is dissolved in $50 \mathrm{~cm}^{3}$ of solution.
4 Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of a solution formed when 0.05 moles of a solute is dissolved in $2.0 \mathrm{dm}^{3}$ of solution.
5 Calculate the number of moles of NaOH in an aqueous solution of $36 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

4 Molar calculations

4.1 Calculating masses and gas volumes

The balanced equation for a reaction shows how many moles of each reactant and product are involved in a chemical reaction.
If the amount, in moles, of one of the reactants or products is known, the number of moles of any other reactants or products can be calculated.

The number of moles (n), the mass of the substance (m), and the molar mass (M) are linked by:

$$
n=\frac{m}{M}
$$

Note: The molar mass of a substance is the mass per mole of the substance. For CaCO_{3}, for example, the atomic mass of calcium is 40.1 , carbon is 12 , and oxygen is 16 . So the molar mass of CaCO_{3} is:
$40.1+12+(16 \times 3)=100.1$. The units are $\mathrm{g} \mathrm{mol}^{-1}$.

COMPULSORY QUESTIONS

Look at this worked example. A student heated 2.50 g of calcium carbonate, which decomposed as shown in the equation:
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g})$
The molar mass of calcium carbonate is $100.1 \mathrm{~g} \mathrm{~mol}^{-1}$.
a Calculate the amount, in moles, of calcium carbonate that decomposes.
$n=\frac{m}{M}=2.50 / 100.1=0.025 \mathrm{~mol}$
b Calculate the amount, in moles, of carbon dioxide that forms.
From the balanced equation, the number of moles of calcium carbonate = number of moles of carbon dioxide $=0.025 \mathrm{~mol}$

Practice questions

1 In a reaction, 0.486 g of magnesium was added to oxygen to produce magnesium oxide.
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
a Calculate the amount, in moles, of magnesium that reacted.
b Calculate the amount, in moles, of magnesium oxide made.
c Calculate the mass, in grams, of magnesium oxide made.
2 Oscar heated 4.25 g of sodium nitrate. The equation for the decomposition of sodium nitrate is:
$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
a Calculate the amount, in moles, of sodium nitrate that reacted.
b Calculate the amount, in moles, of oxygen made.
30.500 kg of magnesium carbonate decomposes on heating to form magnesium oxide and carbon dioxide. Give your answers to 3 significant figures.
$\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}$ (g)
a Calculate the amount, in moles, of magnesium carbonate used.
b Calculate the amount, in moles, of carbon dioxide produced.

5 Percentage yields and percentage errors

5.1 Calculating percentage yield

Chemists often find that an experiment makes a smaller amount of product than expected. They can predict the amount of product made in a reaction by calculating the percentage yield.
The percentage yield links the actual amount of product made, in moles, and the theoretical yield, in moles:

$$
\text { percentage yield }=\frac{\text { actual amount (in moles) of product }}{\text { theoretical amount (in moles) of product }} \cdot 100
$$

Look at this worked example. A student added ethanol to propanoic acid to make the ester, ethyl propanoate, and water.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
The experiment has a theoretical yield of 5.00 g .
The actual yield is 4.50 g .
The molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}=102.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Calculate the percentage yield of the reaction.
Actual amount of ethyl propanoate: $n=\frac{m}{M}=4.5 / 102=0.0441 \mathrm{~mol}$

COMPULSORY QUESTIONS

Theoretical amount of ethyl propanoate: $n=\frac{m}{M}=5.0 / 102=0.0490 \mathrm{~mol}$
percentage yield $=(0.0441 / 0.0490) \times 100 \%=90 \%$

Practice questions

1 Calculate the percentage yield of a reaction with a theoretical yield of 4.75 moles of product and an actual yield of 3.19 moles of product. Give your answer to 3 significant figures.
2 Calculate the percentage yield of a reaction with a theoretical yield of 12.00 moles of product and an actual yield of 6.25 moles of product. Give your answer to 3 significant figures.

5.2 Calculating percentage error in apparatus

The percentage error of a measurement is calculated from the maximum error for the piece of apparatus being used and the value measured:

$$
\text { percentage error }=\frac{\text { maximum error }}{\text { measured value }} \times 100 \%
$$

Look at this worked example. In an experiment to measure temperature changes, an excess of zinc powder was added to $50 \mathrm{~cm}^{3}$ of copper(II) sulfate solution to produce zinc sulfate and copper.
$\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
The measuring cylinder used to measure the copper(II) sulfate solution has a maximum error of $\pm 2 \mathrm{~cm}^{3}$.
a Calculate the percentage error.
percentage error $=(2 / 50) \times 100 \%=4 \%$
b A thermometer has a maximum error of $\pm 0.05^{\circ} \mathrm{C}$.
Calculate the percentage error when the thermometer is used to record a temperature rise of $3.9^{\circ} \mathrm{C}$. Give your answer to 3 significant figures.
percentage error $=(2 \times 0.05) / 3.9 \times 100 \%=2.56 \%$
(Notice that two measurements of temperature are required to calculate the temperature change so the maximum error is doubled.)

Practice questions

3 A gas syringe has a maximum error of $\pm 0.5 \mathrm{~cm}^{3}$. Calculate the maximum percentage error when recording these values. Give your answers to 3 significant figures.
a $21.0 \mathrm{~cm}^{3}$
b $43.0 \mathrm{~cm}^{3}$

4 A thermometer has a maximum error of $\pm 0.5^{\circ} \mathrm{C}$. Calculate the maximum percentage error when recording these temperature rises. Give your answers to 3 significant figures.
a $12.0^{\circ} \mathrm{C}$
b $37.6^{\circ} \mathrm{C}$

COMPULSORY QUESTIONS

6 Graphs and tangents

6.1 Deducing reaction rates

To investigate the reaction rate during a reaction, you can measure the volume of the product formed, such as a gas, or the colour change to work out the concentration of a reactant during the experiment. By measuring this concentration at repeated intervals, you can plot a concentration-time graph.

Note: When a chemical is listed in square brackets, it just means 'the concentration of' that chemical. For example, [O_{2}] is just shorthand for the concentration of oxygen molecules.
By measuring the gradient (slope) of the graph, you can calculate the rate of the reaction. In the graph above, you can see that the gradient changes as the graph is a curve. If you want to know the rate of reaction when the graph is curved, you need to determine the gradient of the curve. So, you need to plot a tangent.

The tangent is the straight line that just touches the curve. The gradient of the tangent is the gradient of the curve at the point where it touches the curve.

Looking at the graph above. When the concentration of A has halved to $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, the tangent intercepts the y-axis at 1.75 and the x-axis at 48 .

The gradient is $\frac{1.75}{48}=-0.0365$ (3 s.f.).
So the rate is $0.0365 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.

Practice questions

1 Using the graph above, calculate the rate of reaction when the concentration of A halves again to $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$.

Answers to maths skills practice questions

1 Core mathematics

1 a $1.413 \times 10^{3}{ }^{\circ} \mathrm{C} \quad$ b $1.0 \times 10^{-7} \mathrm{~m}$
c 1.806×10^{21} atoms
2 a 0.0000055 b 290
c 11150 d 0.001412
e 72
3 a 36.9 b 260
c 0.043 d 8000000
4 Number of molecules $=0.5$ moles $\times 6.022 \times 10^{23}=3.011 \times 10^{23}=3.01 \times 10^{23}$
5 a 4.8 c 1.01
6 a 0.0003 m
c $1 \times 10^{7} \mathrm{~kW}$
b 0.54 d 2.000
b $5 \times 10^{9} \mathrm{~mJ}$

2 Balancing chemical equations

1 a $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} \quad$ b $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
c. $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$

2 a $\mathrm{C}_{6} \mathrm{H}_{14}+9 \frac{1}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}$ or $2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
b $2 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
or $4 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}_{2}$
3 a $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b $3 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaNO}_{3}$

3 Rearranging equations and calculating concentrations

$1 \mathbf{a} n=g K$
b $v=\frac{n}{c}$

2 a $n=\frac{P V}{R T}$
b $T=\frac{P V}{n R}$
$3 \quad \frac{0.2}{0.050}=4.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$4 \quad \frac{0.05}{2}=0.025 \mathrm{~mol} \mathrm{dm}^{-3}$
$5 \frac{36}{1000} \cdot 0.1=3.6 \times 10^{-3} \mathrm{~mol}$

$\frac{36}{R T}$	$\frac{1}{2}$	$\frac{1}{2}$	$\overline{n R}$
$\overline{2}$		\bar{c}	

4 Molar calculations

1 a $\frac{0.486}{24.3}=0.02 \mathrm{~mol}$
b 0.02 mol
c $0.02 \times 40.3=0.806 \mathrm{~g}$
$2 \mathbf{a}^{4.25}=0.05 \mathrm{~mol}$
b $^{0.05}=0.025 \mathrm{~mol}$

3 a $\frac{500}{84.3}=5.93 \mathrm{~mol} \quad$ b 5.93 mol

5 Percentage yields and percentage errors

$13.19 / 4.75 \times 100=67.2 \%$
$26.25 / 12.00 \times 100=52.1 \%$
3 a $0.5 / 21 \times 100=2.38 \% \quad$ b $0.5 / 43 \times 100=1.16 \%$
$4 \quad$ a $0.5 \times(2 / 12) \times 100=8.33 \% \quad$ b $0.5 \times(2 / 37.6) \times 100=2.66$
6 Graphs and tangents
$1-1.25=-0.0192$

CHALLENGE TASK

EXTENSION TASK Moles and Formulae

To succeed with this topic you need to:

- be able to find A_{r} (atomic mass number) values from the Periodic Table
- use a calculator to do basic arithmetic

After working through this Factsheet you will be able to:

- calculate M_{r} (molecular mass number) from A_{r} values
- calculate percentage composition by mass for a compound
- calculate moles from grams and grams from moles of a substance
- calculate empirical formulae using a variely of different methods
- convert empirical formulae into molecular formulae

Examinationguide

The calculations covered by this Factsheet can appear in nearly every module of the AS and A2 specification. The concepts and methods introduced are the basis of all quantitative chemistry and it is vital you can (zandle them.

1. Finding M_{r} (relative molecular mass or formula mass)

The M_{r} of a compound is found by adding up the relative atomic masses (A) of the elements in the compound's formula.

Remember: The A_{r} value is found from the Periodic Table.

Hint: A_{r} is always the larger of the two number in the boxes
Example 1: What is the M_{5} of $\mathrm{C}_{2} \mathrm{H}_{6}$?
$\mathrm{C}_{2} \mathrm{H}_{6}$ includes 2 C atoms and 6 H atoms.
$\mathrm{So}_{2} \mathrm{M}_{t}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=2 \times \mathrm{A}_{r}(\mathrm{C})+6 \times \mathrm{A}_{r}(\mathrm{H})$
($\mathrm{A}_{\mathrm{r}}=12$ for C and 1 for H)
$\therefore M_{r}=(2 \times 12)+(6 \times 1)=30$
i :
Example 2: What is the M_{r} of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
NB: The small 2 outside the brackets multiplies everything inside the bracket - just like in maths.
$\mathrm{So} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ includes 1 Ca atom, 2 N atoms and 6 O atoms.
So $\mathrm{M}_{r}\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)=\mathrm{A}_{r}(\mathrm{Ca})+2 \times \mathrm{A}_{r}(\mathrm{~N})+6 \times \mathrm{A}_{\mathrm{r}}(\mathrm{O})$
($A_{\mathrm{r}}=40$ for $\mathrm{Ca}, 14$ for N and 16 for O)
$\therefore \mathrm{M}_{\mathrm{r}}=40+(2 \times 14)+(6 \times 16)=164$

2. The percentage composition of a compound

You may be asked to find (for example) the percentage of sodium nituate that is nitrogen. N.B this is a commonly asked examination question!

Method

Step 1:- find M_{r} (by totalling A_{r} values)
Step 2;- find $\%$ of an element using:
$\frac{\text { no. of atoms of element } \times \mathrm{A}_{工}}{\mathrm{M}_{1}} \times 100 \%$

Example: What is the percentage by mass of each of the elements present in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$?

$$
\begin{aligned}
\mathrm{M}_{s}\left(\mathrm{C}_{2} \mathrm{H}_{s} \mathrm{Br}\right) & =(12 \times 2)+(1 \times 5)+(80 \times 1) \\
& =109 \\
\% \mathrm{C} & =\frac{12 \times 2}{109} \times 100=22.02 \% \\
\% \mathrm{H} & =\frac{1 \times 5}{109} \times 100=4.59 \% \\
\% \mathrm{Br} & =\frac{80 \times 1}{109} \times 100=73.39 \%
\end{aligned}
$$

Check! these should add up to 100%

3. Moles

What is a mole?
A mole of something is just 6.023×10^{23} of it. A mole of hydrogen atoms is 6.023×10^{23} hydrogen atoms, a mole of water molecules is 6.023×10^{23} water molecules - you could even imagine a mole of people or a mole of cars! The number 6.023×10^{23} is called the Avagadro Number - you do NOT have to learn it!

Exam Hint: - Be careful what if's a mole off A mole of hydrogen atoms (H) is not the same as a mole of hydrogen molecules $\left(H_{2}\right)$. A mole of hydrogen molecules contains 2 moles of hydrogen atomsl If a question refers to a mole of an element, it means a mole of molecules of that element.

Why that particular number?
Avagadro's number is chosen to "fiddle" it so that one mole of a substance has mass (in grams) equal to the A_{r} or M_{r} of that substance. So as hydrogen atoms have $\mathrm{A}_{f}=1$, one mole of hydrogen atoms will have mass one gram. Similarly, as $\mathrm{C}_{2} \mathrm{H}_{6}$ has $\mathrm{M}_{\mathrm{r}}=30$, one mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ will have mass 30 grams. This makes moles easier to work with!

Definition of a mole
The definition of a mole given below probably seems a bit odd, but it is the one that must be given in an exam!
> (Dafmition: One mole is the amount of substance which contains
> the same number of particles (atoms, molecules or ions) as there are atoms in 12.00 g of ${ }^{n} \mathrm{C}$

Calculating with Moles

The important thing is to be able to use the mole in calculations.
The basic equation is:
$\begin{aligned} & \begin{array}{l}\text { Number of } \\ \text { moles }\end{array}\end{aligned}=\frac{\text { mass }(g)}{A_{r} \text { or } M_{r}}$

$$
\text { Mass }(\mathrm{g})=\text { moles } \times \mathrm{A}_{\mathrm{r}} \text { or } \mathrm{M}_{\mathrm{r}}
$$

COMPULSORY TASK

Work through the MaChemGuy "Prep for A-level" playlist. https://tinyurl.com/wzljngt

Book Recommendations

kick back this summer with a good read. The books below are all popular science books and great for extending your understanding of chemistry

Periodic Tales: The Curious Lives of the Elements
This book covers the
chemical elements, where they come from and how they are used. There are loads of fascinating inaghts into uses for chemicals you would hove never even thought about.

Calculations in AS/A Level Chemistry If you struggie with the alalations side of chemistry, this is the book for you. Covers all the pomible calculations you are ever likely to come scroas. Brought to you by the same goy who wrote the excellent chemguide.co.uk
webrte.
The Science of Everydyy Life: Why Teapots Dribble, Tosst Burne and Light Bulbs Shine
The titie says it all really, lots of interesting stuff about the thinge around your home!

Bad Science

Here Ben Goldacre takes apart anyone who published bad/ mislescing or dodgy science - this book will make you think about everything the advertising induatry tries to sell you by making it sound 'sciencey'.

Movie Recommendations

Everyone loves a good story and everyone loves some great science. Here are some of the picks of the best films based on real life scientists and discoveries. You wont find Jurassic Park on this list! We've looked back over the last 50 years to give you our top 5 films you might not have seen before. Great watching for a rainy day.

A Civil Action (1958) A tenacious lawyer takes on a case involving a major compary responsible for cousing several people to be diagnosed with ieukemia due to the town's water supply being contaminated, at the risk of bankrupting his firm and career.

Erin Brokovich (2000) Based on a true story. An unemployed single mother becomes a legal sasistant and almost single-handedly brings down a Californis power company acoused of polluting a city's water supply.

The Human Experiment [2013)
A documentary that explores chemicals found in everydey household products.

The Insider (1999)
A resestch chemist comes under personal and profescional attack when he decides to appear in a "60 Minutes" erpose on Big Tooscco.

Movie Recommendations

If you have 30 minutes to spare, here are some great presentations (and free!) from world leading scientists and researchers on a variety of topics. They provide some interesting answers and ask some thought-provoking questions. Use the link or scan the QR code to view:

Play with Smart Materials

Ansilable at:
$\mathrm{htpc} / / / \mathrm{www}$.ted com/talss/catarins_mota play conducte electricity; a window that turns from clear to opsque st the flip of a switch a jelly that makes music. All this stuff evists, its time to play with it. A tour of surprising and cool new materials.

Just how amall is an atom?
Available at :
bttpri//mww.ted.com/talks/just_how_zmoll_ 2 sin atom
Just how small are atoms? Really, resly, resily small. This fast-paced animation from TED-Ed uses metaphors (imsgine a blueberry the size of a footbsl stadiumi) to give a visceral sence of juat how smal atome are.

Battling Bad Science

Available at:
hutpr://wwow.ted, com/talks/ben_goldscre batting bad sciencett-44279 Every dsy there are news reports of new health advice, but how can you know if theyre right? Doctor and epidemiologist Ben Goldacre chows us, at high speed, the wayp evidence can be distorted, from the Dindingy obvious nutrition claims to the
 very subtie tricks of the pharmaceutical industry.

How Spectroscopy Could Reveal Alien Lífe Anailable at :
bthps/honw.ted.com/talss/garik_jerselian what 3 ircide a star
Garik Ierselisn is aspectroccopist, studying the spectrum emitted by a star to figure out what it's made of and how it might behave. tr's a rare and accessible look at this discipline, which may be coming close to finding a planet friendly to life.

Research, reading and note making are essential skills for A level chemistry study. For the following task you are going to produce 'Cornell Notes' to summarise your reading-

1. Divide your page into three sections like this

2. Write the name, date and topic at the top of the page

4. Review and identify the key points in the left hand box

5. Write a summary of the main ideas in the bottom space

Images taken from http://coe.jmu.edu/learningtoolbox/comelinotea.htm|

Aimed at zudents aged 14-19, Catalyat magazine is packed with interesting articies on cutting-edge saence, interviews and new research written by lesding academics. It also includes a pookiet of teacher's notes, full of idese and lesson plare to bring the articies to life in the clasaroom.
For each of the following topic you are going to use the resources to produce one page of Cornel styie notes.
Use the link of scan the QR code to take you to the resources.

Topic 1: Using Plastics in the Body Available at:
mtps:/hewositemarguk/resourcer/evibrary/resourc s/382317/using-plasticr-body
This Catalpst artide looks at how scientists are learning to use polymers for many mecical applicationc, including implants, bone repairs and reduction in infections.

Topic 2: Catching a Chest
Available at:
hetps:/howos. stem.org, ulk/zystem/fies/eitraryresources/2017/03/Catching 722001820 chent pat This Cstalyat artide looks at analytical chemists who are involved in many kinds of testing, including drug testing to catch chests in sport.

Topic 3: Diamond: More than just a gemstone Available at:
htups:/hawos.stem.arg, ulk/eytem/fies/elibrayresources/2017/02/Diamand\$20mors²20than\$:20j utt $200{ }^{2}$ \%20gemstane por
This Catalpst artide looks at diamond and graphite which are allotropes of carbon. Their properties, which depend on the bonding between the carton atoms, are also examined.

Topic 4: The Bitarre Worid of High Pressure Chemistry
Availabie at:
httpe://wow stem.org uk/ryatem/fies/elibrary; recources/2016/11/Catalyat27 \& the bizarre world of high pressure chemistry.pdf This Catalyst artide investigates high pressure chemistry and dixovers that, when put under extreme pressure, the properties of a material may change dramatically.

Topic 5: Mirroplastic: and the Oceans
Available at:
httpe://wow stem.org uk/syatem/file/elibranyresources/2016/11/Catalpat27_1_micropisatice_320 and_the oceans.pdf
This Catalyst artide looks at microplastic. Microplastics are tiny particles of polymer used in many products. They have been found to be an ewironmental polutant erpecially in ocears.

If you are on holiday in the UK, or on a staycation at home, why not plan a day trip to one of these :

Glasgow Science	Dundee Science
Centre - Glasgow	Centre - Dundee

Science on Social Media

Science communication is essential in the modern world and all the big scientific companies, researchers and institutions hawe their own social media accounts. Here are some of our top tips to keep up to date with developing news or interesting stories:

```
Follow on Twitter:
Satlers' Institute-Gur sctivities induce Festivals or Chemistry; Chemistry Camps; Curricula; Awards
for Technicianc, Gracuater, ALevel Studentr; and Seminars
gmattersing
Daly, Level Chemistry Facts - Daily Chemistry Facts [Eased on the A-Level AqA spec but most tacts
worle with all]
0ctemalevels
Ohemistry Newe -The later chemitry newe from only the ber wurce
0q|emistrynes:
Compound literest-Graphics Eiploring Everyday#chemistry. Winner of ©abow 2018 sience blog
awerd
ecompoundchem
Gnemitry Warld - Chemistry magazine bringing you the latest chemitry newe and researdh wery
doy. Publiched by the Rloyel Society of Chemistry.
gahemistryMorld
Ropal Society of Chemistry - Promote, support and celebrate chemistry. Follow for updates on latest
actitite
0Roygochem
```



```
0gitpymbols & gnumberphile
Operiodicidere
```


Find on Fscebook:

Soience Now - Science Now is a ded cated community that helpe spread sience news in all fields. from physics to biology, medicine to nanatedinology, wpace and beyond!

National Science Foundation - As an independent federal agency, NSF fund a significant proportion of
 basic research. For ofticial source information about NEF, vitit wwer for fow

Soience News Magaine - Science covers important and emerging reseant in al fields of science
EsC Saience Hew- The latest sBC Science and Environment Newz: breaking news, analpis and debate on science and rature around the world

Sciemtific American - Scientific American is the suthority on science and technology for a general audience, with cowtrage that enplairs how reverch charger our understanding of the world and shaper our lives.

These are some textbooks which you may find interesting and useful before and during your AS-Level Chemistry course.
*Essential Maths Skills for AS/A-Level Chemistry By Nora Henry
Published by Philip Allan for Hodder Education
ISBN 9781471863493
*A-Level Year 1, Chemistry, OCR A
Complete Revision and Practice
Published by CGP
ISBN 9781782943402
*A-Level Year 1, Chemistry, OCR A
Complete Revision and Practice
Published by CGP
ISBN 9781782943402
*Aspirin. The Story of a Wonder Drug
By D.Jeffreys
Published by Bloomsbury
ISBN 9781582346007
*Periodic Tales, The Curious Lives of the Elements
By Hugh Aldersey-Williams
Published by Penguin
ISBN 978-0141041452

USEFUL WEBSITES

Chemguide	$\underline{\text { www.chemguide.co.uk }}$
Rod's pages	$\underline{\text { http://rod.beavon.org.uk/index.htm }}$
Knockhardy	$\underline{\text { http://www.knockhardy.org.uk/sci.htm }}$
Amazing grades	$\underline{\text { www.amazing-grades.com }}$
Memrise	$\underline{\text { https://www.memrise.com/ }}$
Doc Brown	$\underline{h t t p: / / w w w . d o c b r o w n . i n f o / ~}$
S-cool Revision	$\underline{\text { https://chemrevise.org/ }}$

Crash course
https://www.youtube.com/user/crashcourse/featured

Science: Things to do!

pancersin exnelwnce

Day 4 of the holidey: and boredom has set in?
There are loads of citizen science projects you can take part in either from the comfort of your bedroom, out and about, or when on holiday- Wikipedia does a comprenensive list of all the current projects taking place. Google "citizen science project"

Want to stand above the rest when it comes to UCas? Now is the time to sact.
MOOCs are online courses run by nearty all universities. They are short FREE courses that you take part in. They are usually quite specialist, but aimed at the public, not the genius?
There are lots of websites that help you find a course, such as edX and Future learn.
You can take part in any course, but there are usually start and finish dates. They mostly irvolve taking part in web chats, wetching videos and interactives.

Some students find the 'triangle method' useful in remembering and rearranging equations.

You cover up the thing in the triangle you want to find. Then, what you can see tells you the calculation to do. For example, if you want to find moles, cover it up and you are left with mass $/ \mathrm{M}_{t}$

This method can be used for ANY equation that has a fraction on one side and just one ling on the other side. Whatever is on the top of the fraction goes in the top of the triangle.

Here are some examples:
Example 1: How many moles are there in 6 g of C ?

$$
\begin{aligned}
& \text { moles }=\frac{\operatorname{mass}(g)}{A_{t}}\left(A_{t}=12 \text { for } C\right) \\
& \therefore \text { moles }=\frac{6}{12}=0.5 \text { moles }
\end{aligned}
$$

(Example 2: How many moles are there in 36 g of $\mathrm{H}_{2} \mathrm{O}$?
Since M_{r} is in the formula, we must calculate this first

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{T}}\left(\mathrm{H}_{2} \mathrm{O}\right)=(1 \times 2)+(16 \times 1)=18 \\
& \text { moles }=\frac{\operatorname{mass}(\mathrm{g})}{\mathrm{M}_{\mathrm{r}}}=\frac{36}{18}=2 \text { moles }
\end{aligned}
$$

Example 3: What is the mass of 0.5 moles of $\mathrm{H}_{2} \mathrm{~S}$?

$$
\begin{aligned}
& M_{r}\left(H_{2} S\right)=(1 \times 2)+(32 \times 1)=34 \\
& \operatorname{mass}(g)=\operatorname{moles} \times M_{r}=0.5 \times 34=17 \mathrm{~g}
\end{aligned}
$$

Example 4: 0.2 moles of a metal have a mass of 4.6 g .
i) Calculate the element's atomic mass
ii) Suggest an identity for the metal.
$\begin{array}{ll}1 & \text { i) } \Lambda_{r}=\frac{\operatorname{mass}(g)}{\operatorname{moles}}\end{array}$

$$
=\frac{4.6}{0.2}=23
$$

ii) Looking at the Periodic Table, we see that sodium has an atomic mass of 23 , and it is a metal.

Challenge Question: Does the metal HAVE to be sodium?

4. Empirical and Molecular Formulas

For calculation purposes there are 2 types of formulae you need to know:

- The empirical formula (cf) shows the ratio of the atoms present in their lowest terms i.e. cancelled down to smallest whole numbers.
- The molecular formula (mf) shows the actual number of each type of atom present in one molecule.

Finding Empirical Formulae

There are several ways to calculate empirical formulae, and these are shown below in order of increasing difficulty:-

1. Calculating EF from Moles

What is the BF of the compound formed when 6 moles of potassium atoms react with 3 moles of oxygen atoms?

$$
\begin{array}{cl}
& \mathrm{K}: \mathrm{O} \\
\text { Moles } & 6: 3 \\
\text { Simplest ratio } & 2: 1 \\
\mathrm{EF}= & \mathrm{K}_{2} \mathrm{O}
\end{array} \quad \text { (divided by } 3 \text {) }
$$

2. Calculating EF from Mass

What is the EF of the compound formed when 6 g of carbon reacts with 32 g of sulphur?

Firstfindmoles:

$$
\text { moles } C=\frac{6}{12}=0.5 \text { Moles } S=\frac{32}{32}=1
$$

$\mathrm{C}: \mathrm{S}$
moles $0.5: 1$ (now divide by 0.5 - the smaller number) Simplest ratio $1: 2$
$\mathrm{EF}=\mathrm{CS}_{2}$

3. Calculating ET from Percentage Composition

NB. This is the most commonly examined method of finding ER. The approach is exactly the same as calculating from mass; you treat the percentages as if they are masses. One method of approaching these is using a table, as shown below - but you must use whichever style of presentation you are most comfortable with.

What is the empinical formula for the compound which contains the following elements by percentage composition of mass?

$$
\mathrm{C}=66.67 \%, \quad \mathrm{H}=11.11 \%, \quad \mathrm{O}=22.22 \%
$$

Element	$\%$	A_{r}	$\% \div A_{r}$	Ratio *
C	66.67	12	5.56	$5.56 \div 1.39=4$
H	11.11	1	11.11	$11.11 \div 1.39=8$
O	22.22	16	1.39	$1.39 \div 1.39=1$

$$
\mathrm{EF}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}
$$

*To find the ratio column, take the smallest of the $\%+A_{r}$ values (which is 1.39 here) and divide all the $\% \div \mathrm{A}_{\mathrm{r}}$ values by it.

4. Calculating EF from Combustion Data

This method is one step up in difficulty from the last example because you have to catculate the masses of the elements first. The combustion products are always oxides. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are the commonest and the following example uses these, although the method can be adapted for others.

Method

Slepl:- find mass of the carbon and hydrogen using
mass of oxide $\times \frac{\text { no. of atoms of element } \times A_{r}}{M_{r} \text { for oxide }}$
Find the mass of any other element in the compound by subtraction.

Step 2:- convert mass to moles for each element by dividing by A_{r}

Step 3:- find the simplest ratio by dividing all the values from step 2 by the smallest of them.

Example: Ig of a compound undergoes complete combustion and produces 2.38 g of CO_{2} and 1.215 g of $\mathrm{H}_{2} \mathrm{O}$. The compound contains only C, H and O . What is its empirical formula?

Step 1: M_{T} for $\mathrm{CO}_{2}=44$
So mass of $C=2.38 \times \frac{12}{44}=0.65 \mathrm{~g}$
M_{r} for $\mathrm{H}_{2} \mathrm{O}=18$
So mass of $\mathrm{H}=1.215 \times \frac{2 \times 1}{18}=0.135 \mathrm{~g}$

Mass of $\mathrm{O}=1-0.65-0.135=0.215 \mathrm{~g}$

Step 2: Moles of $\mathrm{C}=0.65 \div 12=0.054167$
Moles of $\mathrm{H}=0.135 \div 1=0.135$
Moles of $\mathrm{O}=0.215 \div 16=0.0134375$

Step 3: Ratio is:
$C: 0.054167 \div 0.0134375=4$
$\mathrm{H}: \quad 0.135 \div 0.0134375=10$
$0: 0.0134375 \div 0.0134375=1$
So the empirical formula is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$

Finding Molecular Formulae

To do this, you need to know (or be able to find) the empirical formula and M_{r} for the compound.

Method

Step I:- divide M_{t} by EF formula mass to get scale factor
Step 2:- multiply EF by scale factor to give MF

Example 1: If the $\mathrm{EF}=\mathrm{CH}_{2}$ and $\mathrm{M}_{\mathrm{r}}=42$, what is the MF ?

$$
\begin{gathered}
\mathrm{EF}=\mathrm{CH}_{2} \quad \mathrm{M}_{\mathrm{r}}\left(\mathrm{CH}_{2}\right)=(12)+(1 \times 2)=14 \\
\frac{42}{14}=3 \\
\therefore \mathrm{MF}=\left(\mathrm{CH}_{2}\right) \times 3=\mathrm{C}_{3} \mathrm{H}_{6}
\end{gathered}
$$

sxample 2: 0.24 moles of a compound, containing carbon and hydrogen only, have mass 18.72 grams. On complete combustion, this amount of . the compomid yields 63.36 g of carbon dioxide and 12.96 g of water. Find the molecular formula of this compound.

First find the EF. We use the combustion data for this:
Mass of $C=63.36 \times \frac{12}{44}=17.28 \mathrm{~g}$
Mass of $H=12.96 \times \frac{2 \times 1}{18}=1.44 \mathrm{~g}$
Moles of $\mathrm{C}=17.28 \div 12=1.44$
Moles of $\mathrm{H}=1.44 \div \mathrm{I}=1.44$
So ratio is $1: 1$ and EF is CH
Now we need M_{r} in order to find the molecular formula.
We must use the other information in the question;
$\mathrm{M}_{\mathrm{s}}=$ mass \div moles $=18.72 \div 0.24=78$
$\mathrm{M}_{\mathrm{f}}(\mathrm{CH})=13$.
$78 \div 13=6$
So MF $=(\mathrm{CH}) \times 6=\mathrm{C}_{6} \mathrm{H}_{6}$

Practice Questions

Mole calculations (except for volumetric analysis) make up parts of ' A ' level questions. The 13 questions below are designed to give you practice in the different types covered by this Factsheet.

1. Calculating moles of elements (using A_{t} values) How many moles are there in each of the following?
(a) 46 g Na
(b) 12 g Mg
(c) 44 g Sr
(d) 21 g Li
(e) 64 g S
(f) $127 \mathrm{~g} \mathrm{I}_{2}$
(g) $64 \mathrm{~g} \mathrm{O}_{2}$
(h) 7 g Si
(i) $7 \mathrm{~g} \quad \mathrm{~N}_{2}$
(i) $142 \mathrm{~g} \mathrm{Cl}_{2}$
(k) 12.5 g of bromine gas
(l) 0.787 g of neon
(m) 37.9 g of fluorine gas
(n) 1.89 g of potassium
(o) 7.14 g of oxygen gas
2. Calculating the mass of element (using A_{r} values) What is the mass (in g) of each of the following?
(a) 4 moles A_{r}
(b) 0.5 moles Ca
(c) 0.75 moles Mg
(d) 1.5 moles Li
(c) 2 moles Fe
(f) 0.5 moles Br_{2}
(g) 7 moles I_{2}
(h) 2.5 moles O_{2}
(i) 3 moles Cu^{2}
(j) 0.25 moles ${ }^{2}$
(k) 0.18 moles of fluorine gas
(I) 1.75 moles of argon
(m) 0.102 moles of silver
(n) 12.5 moles of lead
(i) 3.9 moles of sodium
3. Calculating A_{r} values from mass and moles What is the A_{y} value of the following elements?
(a) 0.27 moles of PI has a mass of 55.89 g
(b) 18 g of O_{2} contains 0.563 moles
(c) 0.40 moles of S has a mass of 12.8 g
(d) 240 g of Ca contains 6 moles
(c) 14.80 g of Mg contains 0.617 moles
4. Finding relative molecular mass $\left(M_{r}\right)$ from relative atomic masses $\left(A_{r}\right)$ What is the relative molecular mass of the following?
(a) CO_{2}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) SO_{3}
(e) CH_{4}
(f) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
(g) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(h) MgCO_{3}
(i) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(i) SiCl_{4}
(k) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(i) $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$
(m) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}$
(n) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 5 \mathrm{H}_{2} \mathrm{O}$
(o) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
5. Calculating moles of compounds (using M_{i} values)

How many moles are there in each of the following?
(a) $32 \mathrm{~g} \mathrm{SO}_{2}$
(b) $90 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$
(c) $160 \mathrm{~g} \mathrm{SO}_{3}$
(d) $22 \mathrm{~g} \mathrm{CO}_{2}$
(e) $8 \mathrm{~g} \mathrm{CH}_{4}$
(f) 8 g MgO
(g) $100 \mathrm{~g} \mathrm{Ca} \mathrm{CO}_{3}$
(h) 2 gCO
(i) $14 \mathrm{~g} \mathrm{SiO}_{2}$
(j) $80 \mathrm{~g} \mathrm{NO}_{2}$
(k) $30.5 \mathrm{~g} \mathrm{LiNO}_{3}$
(l) $0.87 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(m) $6.9 \mathrm{~g} \mathrm{HNO}_{3}$
(n) $18 \mathrm{~g} \mathrm{Na} \mathrm{NO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(o) $21.55 \mathrm{~g} \mathrm{CaCl}_{2}$
6. Calculating the mass of compounds (using M_{+}values)

What is the mass (in g) of each of the following?
(a) 2 moles $\mathrm{C}_{4} \mathrm{H}_{8}$
(b) 0.33 moles CO
(c) 5 moles CaO
(d) 1.5 moles NO
(c) 0.1 moles $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
(f) 0.2 moles $\mathrm{Na}_{2} \mathrm{O}$
(g) 0.5 moles CaCO_{3}
(h) 2.7 moles HCl
(i) 0.7 moles NaCl
(j) 8 moles $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
(k) 4.6 moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
(l) 0.012 moles $\mathrm{C}_{2} \mathrm{H}_{6}$
(m) 4 moles ClO_{4}
(o) 0.56 moles MgCl_{2}
7. Calculating M_{r} values from mass and moles

What is the M , value for each of the following compounds?
(a) 1.0 g of compound A contains 0.0208 moles
(b) 1.5 moles of compound B has a mass of 105 g
(c) 14.8 g of compound C contains 0.117 moles
(d) 7.0 g of compound D contains 0.219 moles
(e) 0.24 moles of compound E has a mass of 13.92 g
8. Find the percentage composition by mass of elements in a compound What is the percentage composition by mass of each element in the following compounds?
(a) SiCl_{4}
(b) $\mathrm{C}_{2} \mathrm{H}_{6}$
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) CaBr_{2}
(e) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
9. Calculating empirical formula from moles

What is the empirical formula of compounds with the following composition?
(a) 2 moles Na with 2 moles 1
(b) 0.1 moles K with 0.05 moles O
(c) 0.5 moles N with 1.5 moles H
(d) 0.2 moles Mg with 0.4 moles Cl
(e) 1.2 moles of a carbon oxide contains 0.4 moles of carbon
10. Calculating empirical formula from mass

What is the empirical formula of compounds with the following (i) composition by mass?
(a) 12 g C with 16 g O
(b) 6 g Mg with 4 gO
(c) 46 g Na with 80 g Br
(d) 14 g N reacting wilh H to form 17 g of compound
(e) 22 g Sr reacting with O to form 26 g of compound
11. Calculating empirical formula from percentage composition

What is the empinical formula of each of the following compounds?
(a) $80 \% \mathrm{C}, 20 \% \mathrm{H}$
(b) $52.2 \% \mathrm{C}, 13.1 \% \mathrm{H}, 34.7 \% \mathrm{O}$
(c) $40.4 \% \mathrm{C}, 7.9 \% \mathrm{H}, 15.7 \% \mathrm{~N}, 36,0 \% \mathrm{O}$
(d) $38.7 \% \mathrm{C}, 9.7 \% \mathrm{H}, 51.6 \% \mathrm{~S}$
(e) $40.2 \% \mathrm{~K}, 26.9 \% \mathrm{Cr}, 32.9 \% \mathrm{O}$
(f) $85.25 \% \mathrm{BaCl}_{2}, 14.75 \%$ water of crystallisation
12. Calculating empirical formula from combustion data What is the empirical formula of each of the following compounds?
(a) Complete combustion of 1.0 g of a compound produced $2.99 \mathrm{~g} \mathrm{CO}_{2}$ and $1.64 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(b) 1.0 gof a compound underwent complete combastion and produced $3.035 \mathrm{~g} \mathrm{CO}_{2}$ and $1.55 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
i : (c) 2.0 g of a compound produced $5.86 \mathrm{~g} \mathrm{CO}_{2}$ and $3.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ on complete combustion
(d) A compound made of carbon, hydrogen and oxygen produced 2.2 g CO_{2} and $1.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ when 1.0 g of it underwent complete combustion
13. Finding molecular formula from empirical formula and M_{r}

What is the molecular formula of the following?
(a) E.F. $=\mathrm{CH}$
$\mathrm{M}_{\mathrm{s}}=72$
(b) $\mathrm{BE}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
$M_{1}=42$
(c) $\mathrm{E} . \mathrm{F}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$
$M_{i}=214$
(d) $\mathrm{B} . \mathrm{F}=\mathrm{CH}_{2} \mathrm{O}$
$M_{\mathrm{H}}=120$
$\mathrm{M}_{\mathrm{t}}=78$
(e) $\mathrm{B} . \mathrm{F}=\mathrm{NaO} \quad \mathrm{M}_{\mathrm{t}}=78$
\qquad

